Tools for DICOM Implementation

David Clunie
CoreLab Partners, Inc.
Outline

• Tools for DICOM implementation

• Toolkits and sample/reference code

• Validators, test tools and sample data

• IHE as implementation guide and testing venue
Categories of tools

• **Purpose**
 – viewers
 – servers (PACS)
 – toolkits for implementers
 – reference for implementers
 – testing and validation tools

• **Availability and support**
 – freeware
 – open source
 – commercial
Viewers

- **Simple and primitive**
 - load single image & display

- **Media (CD) viewers**
 - view entire patients
 - various modalities (CT, MR, etc.)
 - from CD or local hard drive
 - +/- advanced visualization (3D, etc.)

- **Network capable**
 - DICOM store/query/retrieve
Servers

• **Applications**
 – testing
 – research PACS
 – clinical PACS

• **Capabilities**
 – store/query/retrieve
 – management functions (exceptions/edit/reconcile)
 – workflow enabled (HL7 RIS interface)
 – web server (WADO)
 – security (authentication/access control/audit trail)
Toolkits

• **Functionality**
 – read/write DICOM “files” and messages
 – access to lists of DICOM attributes
 – hide details of encoding from programmer
 – convenient access to bulk (pixel) data
 – memory management for large images
 – compressed image support
 – simplify creating/writing “correct” objects
 – implement network services
 – read/write DICOM media (DICOMDIR)
Toolkits

• Abstraction Level
 – network
 • send/receive sets of files
 • open associations, send individual commands
 – data
 • lists of attributes (data elements)
 • create/extract entire objects, modules, macros
 • create/extract structure (e.g., trees for sequences)
 • create/extract abstract models (e.g., in 3D space)
 • support for enhanced multi-frame descriptors
Toolkits

- **Choice**
 - free, open source, commercial
 - level of support – help desk, public forum
 - platform – single (windows) or cross-platform
 - language/framework – C, C++, Java, .NET
 - robustness – exceptions, logging
 - performance – input/output/network
 - comprehensiveness of support for DICOM standard
 - still under active development
 - support the evolving DICOM standard
Reference implementations

• Value
 – source code educates implementers
 – resolves ambiguities in standard
 – indicates of what parts of DICOM standard are used
 – may be well documented and/or designed
 – may have well-defined API
 – often multi-platform
 – if open source, reusable in products
 – faster time to market with lower risk
 – test target in the absence of other products
Standard API

• **Application Hosting**
 – DICOM PS 3.19 WG 23 Sup 118
 – web service between “Host” & “Application”
 – WS end-points on same machine
 – language neutral (C++, C#, Java, etc.)
 – file, native XML model, abstract XML model
 – bi-directional and symmetric
 – future common API for toolkits?
• **Types of tests**
 – development – unit/system/integration
 – deployment – user acceptance/cross-vendor
 – service & support – diagnostic tools

• **Types of tools**
 – testing utilities & frameworks
 – debugging tools
 – test objects
 – test servers
 – object and message validators
• **Interface to utilities**
 – command line or graphical user interface
 – usable from scripts and batch files

• **Typical functions**
 – dump DICOM file contents in readable form
 – extract attributes from files
 – create test files from script or template
 – edit attributes (add/remove/change values)
 – send/receive on network
Debugging tools

• **Usage**
 – site support staff
 – field service and support staff
 – during inter-vendor testing

• **Types of tools**
 – simulate device behavior
 – capture messages between devices
 – analyze captured messages
Test Objects

• **Image and other composite objects**
 – synthetic – generated *de novo*
 – real – from modalities (de-identified)
 – combination – modified real images

• **Test messages**
 – to use to test DICOM network services
 – e.g., test queries and responses
 – scripts & templates to use with toolkits

• **Test Media**
 – physical media or ISO image files
Test Servers

• Public
 – receive/query/retrieve
 – avoiding configuration issues
 • C-GET
 • C-MOVE assume same port as retrieve command
 – www.dicomserver.co.uk

• Local
 – within company or hospital or lab
 – tunnel in firewall to DICOM port
Validators

• **Validate for compliance with DICOM**
 – images and other composite objects in files
 – from media or received/captured from network
 – captured network messages (queries, etc.)

• **What to validate**
 – compliance with IOD (defined by SOP Class)
 – compliance with template (Structured Reports)
 – correct encoding of attributes
 – compliance with “profiles” (media, IHE)
 – warn of “undesirable” characteristics
% dciodvfy op.dcm

Ophthalmic Photography 16 Bit Image

Error - Value invalid for this VR
- (0x0010,0x0030) DA Patient's Birth Date DA [0] = <9999/99/99>
- Character invalid for this VR = '9' (0x39)

Warning - Value is zero for attribute <Emmetropic Magnification>

Error - Attribute present when condition unsatisfied
(which may not be present otherwise)
Type 2C Conditional Element=<Mydriatic Agent Code Sequence>
Module=<Ophthalmic Acquisition Parameters Macro>
Validators - example

% dciodvfy cr.dcm

CR Image

Error - Missing attribute Type 2 Required Element=<Study ID> Module=<General Study>

Error - Lookup Table Data bad - VOI LUT - LUT Descriptor number of bits = 16 but maximum LUT Data value is 0xfd3

Warning - Retired attribute - (0x0032,0x1030) LO Reason for Study

Warning - Unrecognized defined term <LOG_E REL> for attribute <Rescale Type>

Warning - Attribute is not present in standard DICOM IOD - (0x0032,0x1032) PN Requesting Physician
What standard to test against

• **What needs to be tested**
 – does it “work”?
 – is it “correct”?

• **Compliance with DICOM standard**
 – does NOT mean that it will “work”
 – may not be necessary for it to “work”

• **For example**
 – device may “interoperate” by ignoring non-compliance
 – a compliant device may fail by ignoring a “feature”
Failure to apply Display Shutter to inverted DICOM image
- Modality vendor is compliant – sends Display Shutter
- PACS vendor is “compliant” – allowed to ignore Display Shutter
- PACS vendor promises this “feature” in new version only – requires complete PACS server hardware replacement !@#$
Customer “unsatisfied”
What to test

• **Standalone**
 – devices produce compliant objects
 – devices use compliant objects correctly
 – implement the features user requires
 – gracefully handle “bad” but usable objects

• **As pairs of devices**
 – that they successfully communicate
 – that they “work” to the user’s satisfaction

• **As sequence of multiple devices**
 – e.g., workflow from order/acquire/store/check/display
IHE and testing

• Original RSNA DICOM testing initiative
 – central test node(s), test tools and plans

• IHE developed “integration profiles”

• IHE “connectathons”
 – standalone testing with tools
 – test scenarios between “actors”
 – tests against reference implementations
 – tests between actual implementations
 – check logs to be sure “work” for right reasons

• Free and open source
Finding tools

• **Google**
 – “dicom toolkit”

• **Some useful web sites with links**
 – http://www.dclunie.com
 – http://www.idoimaging.com

• **Forum for dicom discussion**
 – news:comp.protocols.dicom
Finding test images

• Not quite as easy as finding tools

• Google
 – “dicom samples”, “dicom images”

• Some useful web sites with links
 – http://www.dclunie.com
 – http://barre.nom.fr/medical/samples/

• There is no “official” test library
 – ftp://medicat.nema.org/MEDICAL/Dicom/DataSets
 – Is a non-public NEMA members-only test library? status
Conclusions

• Plethora of implementations and tools
 – many are free and open source
 – many are well supported
 – so, do not fear DICOM’s “complexity”

• Testing is important
 – failure to test is inexcusable
 – good testing leads to happy customers

• IHE can help
 – use the profiles, use the tools, participate