DICOM Research Applications
- life at the fringe of reality

David Clunie
RadPharm, Inc.
Overview

- Range of research applications
- Clinical versus research context
- Commonalities and differences
- Types of image support & novel devices support
- DICOM versus proprietary research formats
- Non-image stuff
- Workflow
- De-identification
- Hosted applications
- Web services
Motivation

- **Day job**
 - large commercial oncology clinical trials

- **Involved in**
 - NCI caBIG in vivo imaging workspace projects

- **Observing other groups struggling to**
 - bridge clinical and research worlds
 - handle disparate information sources & sinks
 - leverage COTS and open-source technology
Types of Research

- Acquisition technology
- Image processing and analysis
- Biomarkers
- Drugs & in vivo devices
- Animal trials
- Clinical trials
Areas of Application

- Research
- Development
- Validation
- Verification
- Evaluation
Clinical versus Research

- DICOM is everywhere in clinical imaging
 - undeniable, unavoidable
 - medical IS folks get over it
- Not the same acceptance in research
 - whiners say DICOM is
 - too big, complicated, expensive, limited, slow, …
 - not XML
- Missing an opportunity
 - to leverage huge base of codified expertise & tools
- Still unavoidable for a lot of research
Clinical versus Research

- Research and clinical trials are “niche markets”
- Almost completely ignored by major medical device vendors
- Re-using COTS may require creative and novel workarounds
- Specialist 3rd party vendors often not DICOM aware or literate
Commonalities

- Involves use of images
- Acquire images
 - human or animal
 - in vivo or ex
- Process and analyze images
- Store intermediate work
- Store and distribute results
- Search and retrieval
- Repetitive non-trivial workflow
Differences

- Specialized acquisition technology
- Multi-subject acquisition (TMA)
- De-identified subjects
- Specialized processing & analysis
- Complex form of intermediate data
- Different search criteria
- Different (if any) regulatory burden
- Different workflow
Acquisition Technology

- Does DICOM have adequate coverage?
 - to encode bulk (pixel) data
 - to manage data (demographics, etc.)
 - to describe acquisition

- Broad range of modalities
 - well beyond traditional radiology

- Improved secondary capture
 - multi-frame, vectors to describe dimensions

- Extensible with private attributes
Acquisition Technology

- Almost anything that is (or is like) an image
 - can be encoded in DICOM
 - should be encoded in DICOM
 - will be encoded in DICOM if from COTS device

- Use newer objects when possible
 - enhanced multi-frame family
 - more efficient access in single object
 - more robust descriptions (technique, timing)
 - extensible private functional groups
Multi-frame Functional Groups

- Shared attributes
- Per-frame attributes
- Pixel data
Functional Group Macros
shared for all frames

Sequence of repeating Functional Group Macros for each individual frame

Other attributes

Shared Functional Groups Sequence
 > Functional Group A Macro

 > Functional Group K Macro

Per-frame Functional Groups Sequence

Item 1 (Frame 1)
 > Functional Group B Macro
 > Functional Group C Macro

 > Functional Group M Macro

Item 2 (Frame 2)
 > Functional Group B Macro
 > Functional Group C Macro

 > Functional Group M Macro

.....

Item n (Frame n)
 > Functional Group B Macro
 > Functional Group C Macro

 > Functional Group M Macro

Other attributes

Pixel Data

 Frame 1
 Frame 2

 Frame n
Temporal Position Index

Trigger Delay Time

48 ms 2

In-Stack Position

Stack ID = 1

Dimension Index Pointers:
1. Temporal Position Index
2. Stack ID
3. In-Stack Position

Time (1)

Space (2)

Dimenion Index Values

2 \ 1 \ 5

0 ms 1

In-Stack Position
DICOM Enhanced Objects for Research Acquisitions

- Easier to keep data for a single “experiment” organized
- Slices all together in one object
- Can explicitly describe dimensions
 - generic: space, time, cardiac cycle position
 - specific: standard or private
- Supported by secondary capture
 - e.g., for novel modalities
 - as of CP 600
DICOM Enhanced Objects for Intermediate Work Storage

- To join processing pipeline components
- Same arguments apply as for acquisition
 - private frame descriptions and dimensions
 - e.g., real and imaginary frames
- Major gap is the absence of floating point pixel data representations
 - OF value representation (IEEE 32 bit float)
 - not defined for Pixel Data (7FE0,0010)
 - not supported by toolkits for Pixel Data
DICOM Output

- Emphasis on “Translational Research”
 - “bench to bedside”
- More modest goal for images
 - clinical distribution of research tool output
- Clinical systems (PACS)
 - all accept DICOM input
 - most will not accept non-DICOM input
 - almost none aware of research formats
 - DICOM encapsulated PDF is an option
Research Only Formats

- Medical equipment proprietary formats
 - largely gone – “DICOM inside”

- Research software proprietary formats
 - groups have pre-DICOM development history
 - lacking toolkits and expertise in early days
 - single file for entire 3D/4D volume convenient
 - every group develops better “framework”
 - floating point sometimes required
 - some use other standards (HDF, NetCDF)
Problems with Research Only Formats

- Convert DICOM input from modalities
 - discard management & technique data
- Often no management metadata
 - organized in files & folders not database
 - build custom format-aware database
- Convert output to DICOM for PACS
 - inadequate meta-data to do it right
- Problems are surmountable
 - generic format agnostic data warehouse
 - just use DICOM in the first place?
Non-Image DICOM Objects for Research

- **Segmentation**
 - raster – binary, fractional (occupancy, probability)
 - surfaces – mesh

- **Registration**
 - rigid – affine transform
 - non-rigid – deformation field

- **Sorting and grouping**
 - key object selection (KOS) document
Result Reporting
DICOM Objects for Research

- Numeric and structured results
 - structured report (SR)
- Image appearance
 - Grayscale and color presentation states
- Multi-modality image fusion
 - Blending presentation state
- Display Organization
 - Structured Display – specific images
 - Hanging Protocols – rules for classes of images
Other Bulk Data
DICOM Objects for Research

- Time-based Waveforms
 - ECG
 - Hemodynamic
 - Audio

- MR Spectroscopy
 - Single voxel
 - Multi-voxel
 - Multi-frame
 - Metabolite maps (CSI) as images
Storage Issues to Address or Work In Progress

- Floating point pixels
 - needed for research but no current work item
 - modality vendors convinced they don’t need it
- More complex identification
 - specimen identification
 - recently completed
- Really, really big images (> 64k x 64k)
 - whole slide imaging
 - work in progress – pyramidal tiling approach
Research Workflow

● Needs
 • small volume research often unmanaged and ad hoc workflow
 • reliability of repetitive tasks rapidly reduces as scale increases
 • multi-center phase III clinical trials demand rigorous workflow control

● Reliable and consistent
 • identifiers and status
 • sequence of operations
Research Workflow

● Solutions in DICOM
 • Worklists & Performed Procedure Step
 • Modality, General Purpose, Unified

● Solutions in IHE
 • Teaching file and Clinical trial Export (TCE)
 • Import Reconciliation WorkFlow (IRWF)

● Equally applicable to
 • novel device acquisitions
 • transfer from sites to central labs
De-identification

- Privacy is important
- Individual researchers are not lawyers
- IRBs are not always consistent
- Use-cases vary
 - need body weight for PET, not for other stuff
 - need dates for longitudinal studies
- Researchers don’t know all DICOM attributes
- DICOM standard on de-identification
 - what to do with which attributes when
Research and Application Hosting

- **Goal is reuse of existing infrastructure**
 - engineers build the hosts
 - scientists write the application that is hosted
 - more rapid translation for clinical use and sale

- **Hosts take care of**
 - workflow
 - data selection, retrieval and persistence

- **Hosted applications**
 - do the processing +/- user interaction
Hosted Applications

Hosted Application (Plug-in)

API (Plug)

API (Socket)

Hosting Application (e.g. Medical Workstation)
Hosted Applications

The same Hosted Application can run on any platform (Hosting System) that supports the API.
Hosted Applications

- **Platform neutral hosting**
 - Web Services end points on local host

- **Bulk (pixel) data transfer**
 - via URIs which may be local files
 - memory-mapped files for efficiency

- **Meta-data interfaces**
 - binary – entire original file
 - native – XPath query of DICOM attributes
 - abstract – N dimensional model
DICOM, Web Services and Research

- DICOM is almost a quarter century old
- Wide area distribution infrastructure services have improved
- “X” buzzword has become “WS-*”
- Genuine reasons to share SOAP-based persistence, transport and security infrastructure
- Adapt to support generic IHE XDS
- SOAP MTOM/XOP transport of ordinary DICOM files
- Complex remote queries over web services
- New working group formed
Conclusion

- DICOM is good for research too
- DICOM is here to help
- DICOM can accommodate specific needs
- DICOM has a clinical trials working group
- DICOM is branching out into uncharted water
- DICOM wants to be buzzword compliant too

... even at the fringe of reality