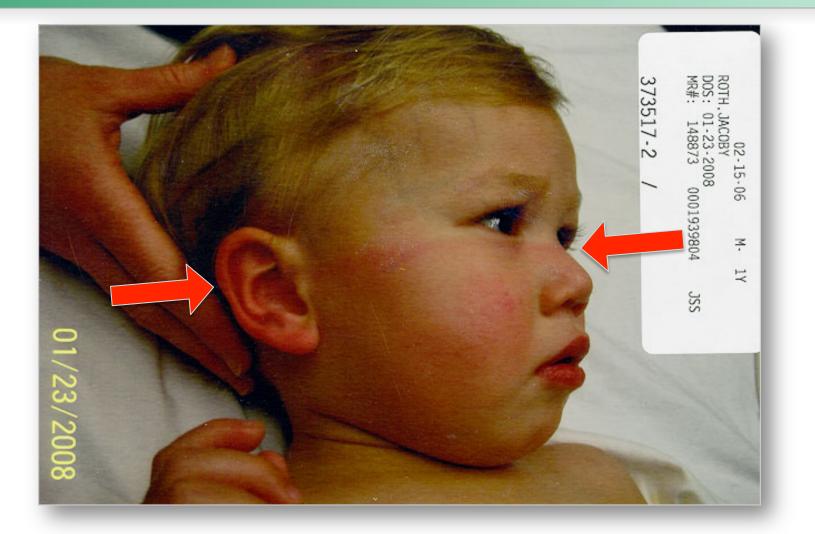
CT Radiation Dose Information -What to Capture and How

David Clunie CoreLab Partners, Inc.

Affiliations & Disclosures

- CTO, CoreLab Partners, Princeton, NJ
- PixelMed Publishing, Bangor, PA
- Editor, DICOM Standard
- Co-chair, IHE Radiology Tech. Committee


Background

- Utilization of CT has exploded
- Technology allows faster delivery of higher doses
- Speed has led to newer applications that acquire many more slices at same location (e.g., perfusion)
- Radiation dose may be harmful
- Monitoring & alerting is required

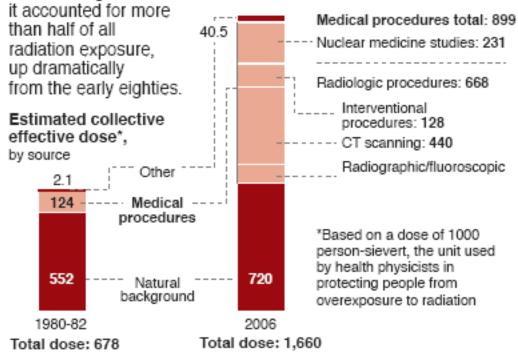
Perceived or Real Risk

- Incidents of deterministic events in popular press (hair loss, erythema)
- Acknowledged rising CT use and source of dose relative to background
- Cancer risk estimates based on linear non-threshold (NLT) model
- Epidemiological studies documenting observed increase in risk

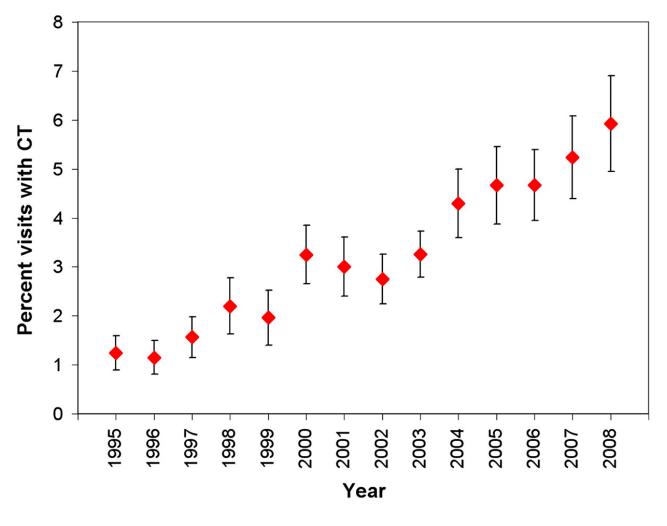
Jacoby Roth Incident

New York Times 2009/10/16 (supplied by family's attorney with PHI as published)

Cedars-Sinai Incident

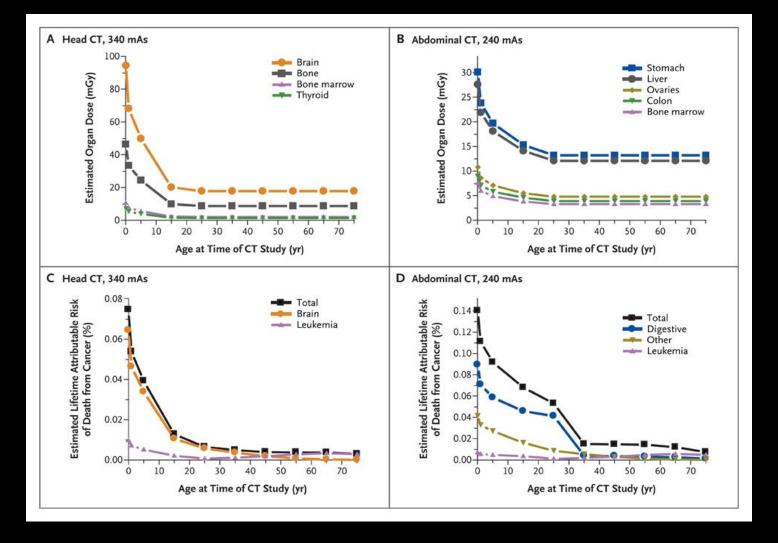


Popular Press


Medical tests major source of radiation

Americans get the most medical radiation in the world. In 2006,

SOURCE: Radiology magazine


Graph illustrates percentages of ED visits with CT from 1995 to 2008 in patients younger than 18 years.

Larson D B et al. Radiology doi:10.1148/radiol.11101939

Radiology

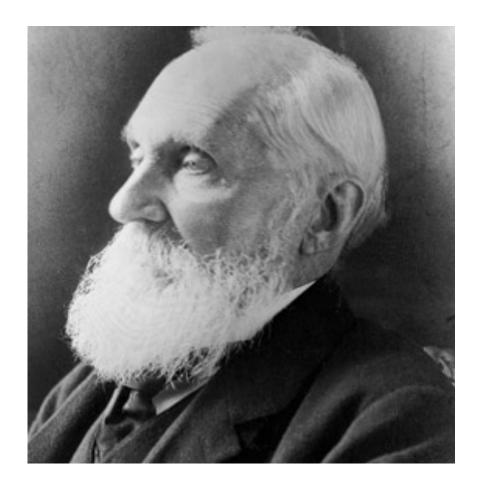
Estimated Organ Doses and Lifetime Cancer Risks from Typical Single CT Scans of the Head and the Abdomen.

Brenner DJ, Hall EJ. N Engl J Med 2007;357:2277-2284.

Variable	HR (95% CI)	Decreased Increased ← risk risk →
Sex, male Unadjusted Adjusted	1.002 (0.963–1.042) 1.504 (1.443–1.568)	
Age (per year) Unadjusted Adjusted	1.039 (1.037–1.040) 1.045 (1.043–1.047)	•
Radiation from cardiac procedure (per milliSievert)* Unadjusted Adjusted	es 1.001 (1.000–1.002) 1.003 (1.002–1.004)	• •
Radiation from cardiac procedures* Per 10-mSv increase Unadjusted Adjusted	1.013 (1.002–1.023) 1.028 (1.018–1.039)	o
Per 20-mSv increase Unadjusted Adjusted	1.025 (1.004–1.047) 1.058 (1.036–1.080)	● - -⊙-
Per 30-mSv increase Unadjusted Adjusted	1.038 (1.006–1.072) 1.088 (1.054–1.122)	
Per 40-mSv increase Unadjusted Adjusted	1.051 (1.008–1.097) 1.119 (1.073–1.166)	-0-
Radiation from noncardiac procedures (per milliSievert) Unadjusted Adjusted	1.009 (1.007–1.011) 1.008 (1.006–1.010)	
		0.9 1.0 1.2 1.5 HR (95% Cl)

Figure 1: Relation between cumulative exposure to low-dose ionizing radiation (measured in milliSieverts) from cardiac imaging and therapeutic procedures after acute myocardial infarction and the risk of cancer during a mean follow-up period of 5.0 years. Hazard ratios (HRs) above 1.0 indicate an increased risk of cancer. Adjusted HRs were derived from models adjusted for age, sex and exposure to low-dose ionizing radiation from noncardiac procedures. *Among patients who were exposed to more than 0 mSv of radiation. Note: CI = confidence interval, mSv = milliSieverts.

Eisenberg M J et al. CMAJ DOI:10.1503/cmaj.100463


Assuring Minimal Dose

- Reducing operator error
- Reducing inappropriate use of CT
- Improving protocols
- Improving low-dose technology
- Improving surveillance
- Greater regulation and reporting
- Better knowledge base

"If you can not measure it, you can not improve it."

Lord Kelvin (William Thomson 1824-1907)

1st President of IEC (International Electrotechnical Commission)

Sources & Storage of Data

Utilization, billing or survey information

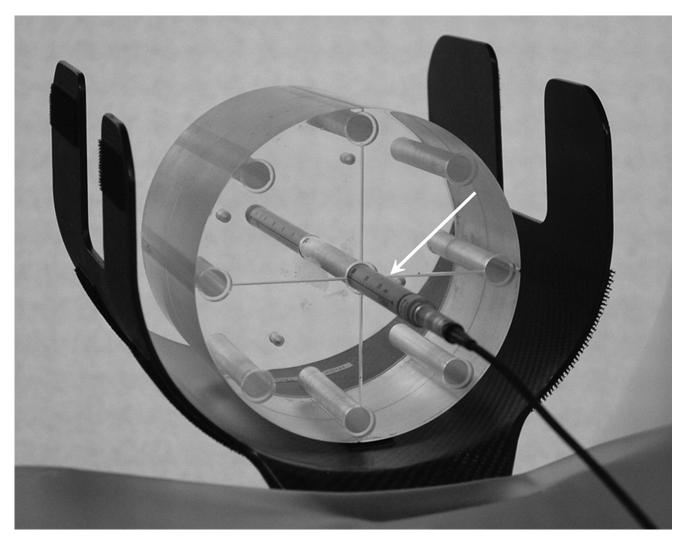
- indication
- type of procedure
- age/sex

National Dose Index Registries

- type of procedure
- dose delivered (CTDIvol, Total DLP)

Institutions' internal databases

- manual or automated logging


Longitudinal patient-specific record

- lifetime record, across institutions
- part of EHR or separate dose-specific system

Procedure Dose Data

- What would be absorbed by a phantom
 - CTDIvol (mGy)
 - DLP (mGy.cm)
- Effect of what was absorbed
 - Effective Dose (mSv)
- What is the additional risk
 - Lifetime Attributable Risk of cancer
- All are estimates, not measured

Figure 5a. (a) A solid-state real-time dosimeter (arrow) is inserted into a head CTDI phantom to measure the CTDI100.

Bauhs J A et al. Radiographics 2008;28:245-253

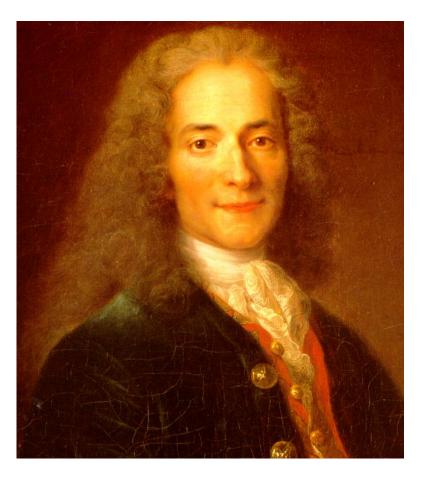
RadioGraphics

©2008 by Radiological Society of North America

Output versus Actual

What the machine output

 CTDIvol and DLP describe the output of the scanner as if absorbed by a phantom, not measured in the actual patient


Extrapolation to real patients

- requires patient size information
- impact on organs (tissue weighting factors)
- assumes knowledge of impact on risk

"The perfect is the enemy of the good."

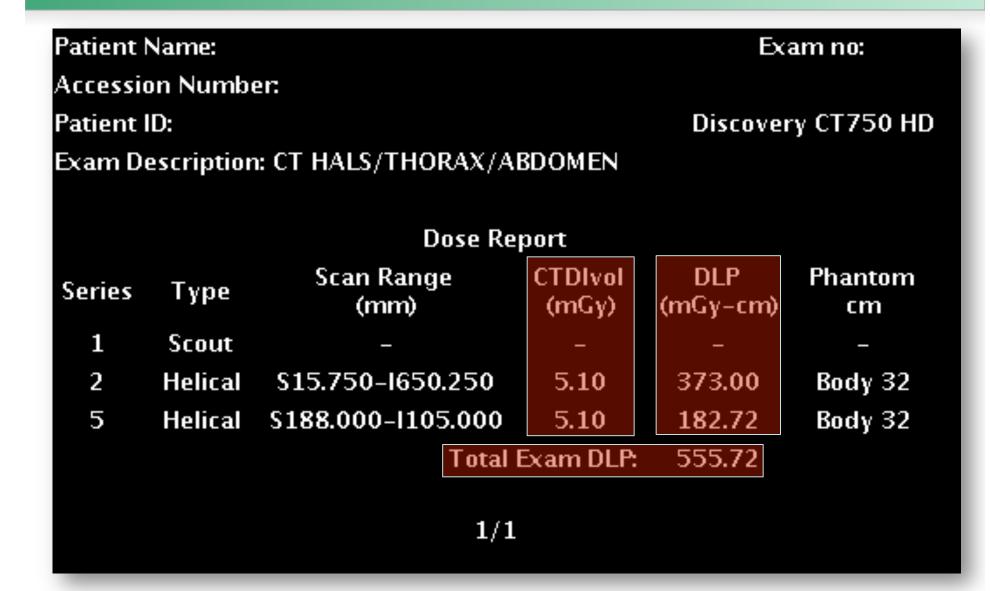
Voltaire (1764)

"Le mieux est l'ennemi du bien."

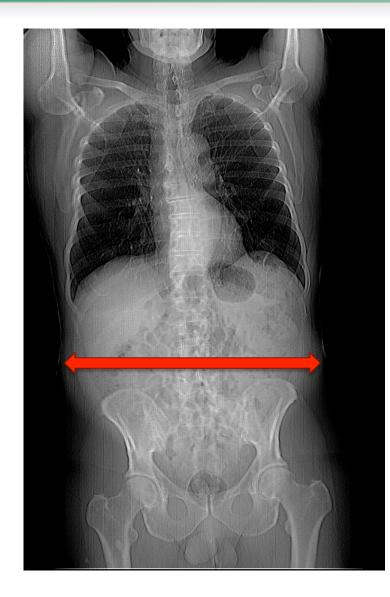
Capture what we can

Easy to capture

- per acquisition CTDIvol and DLP
- total procedure DLP


Can be captured

- standard code/term for procedure type
- *standard* code/term for anatomy
- proxies for patient size height, weight, sex


Harder to capture

- actual measures of patient size (localizer?)
- actual organs exposed and extent (segment images?)

CTDIvol & DLP

Size from Localizer or Axial

Segmentation

- Fully automated organ segmentation from axial slices is non-trivial but tractable
- Might be useful for more refined tissue factor weighting based estimates of organ dose or total dose rather than depending on nominal procedure type
- Certainly useful for patient-specific Monte Carlo simulations of dose
- Cannot segment beyond reconstructed images (e.g., overranging for helical scans, scatter beyond scan extent), but could be used to scale to fit anthropomorphic phantoms

What was done ?

(Performed) Procedure Type

- varies from site to site
- varies from scanner to scanner
- varies between operator !#\$%
- limited and non-standard codes
- non-standard strings (Study Description)
- language and locale specific
- may or may not include anatomic region

Dose from Modality

- Multiple possible DICOM sources
- Image "header"
- Modality Performed Procedure Step
- Radiation Dose Structured Report
- Dose Screen OCR or "header"

Dose from Modality - Images

Images are insufficient

- technique only
 - kVP,mAs, not usually CTDIvol
 - not DLP, which spans entire acquisition
- multiple reconstructions per exposure
 - soft tissue and bone reconstructions, MPRs
 - might count more than once
- timing of encoding
 - images encoded/sent before acquisition ends

Dose from Modality - MPPS

MPPS is insufficient

- limited ability to encode complex data
- transient message, nor a persistent object
- cannot be "stored" long term or queried
- intended to manage scheduling system
- also not very widely implemented
- perceived as offering little benefit in addition to work list

Dose from Modality - RDSR


Radiation Dose Structured Report

- persistent document-like object
- store to PACS, RIS, XDS, CD media
- extensible coded structured content
- similar to other DICOM "evidence document" structured content like measurements
- allows transfer and addition of more content
- contains aggregate and per event exposure
- contains detailed technique description

DICOM CT RDSR

CT RADIATION DOSE SR IOD TEMPLATES

The templates that comprise the CT Radiation Dose SR are interconnected as in Figure A-12

Figure A-12: CT Radiation Dose SR IOD Template Structure

DICOM CT RDSR

	: CONTAINER: X-Ray Radiation Dose Report [SEPARATE] (DCMR,10011)
▼	HAS CONCEPT MOD: CODE: Procedure reported = Computed Tomography X-ray
	HAS CONCEPT MOD: CODE: Has Intent = Diagnostic Intent
	HAS OBS CONTEXT: CODE: Observer Type = Device
	HAS OBS CONTEXT: TEXT: Device Observer Name = ilqhfaatc1ws444
	HAS OBS CONTEXT: TEXT: Device Observer Manufacturer = Philips
	HAS OBS CONTEXT: TEXT: Device Observer Model Name = Brilliance 64
	HAS OBS CONTEXT: TEXT: Device Observer Physical Location During Observation = PMSTL
	HAS OBS CONTEXT: DATETIME: Start of X-ray Irradiation = 20100422162839.030
▼	HAS OBS CONTEXT: CODE: Scope of Accumulation = Study
	HAS PROPERTIES: UIDREF: Study Instance UID = 1.2.840.113704.1.111.6084.1271942101.12
▼	CONTAINS: CONTAINER: CT Accumulated Dose Data [SEPARATE]
	CONTAINS: NUM: Total Number of Irradiation Events = 2 events
	CONTAINS: NUM: CT Dose Length Product Total = 19.67375 mGycm
►	CONTAINS: CONTAINER: CT Acquisitions [SEPARATE]
▼	CONTAINS: CONTAINER: CT Acquisitions [SEPARATE]
	CONTAINS: CODE: Acquisition Type = Sequenced Acquisition
	CONTAINS: CODE: Procedure Context = CT without contrast
	CONTAINS: UIDREF: Irradiation Event UID = 1.2.840.113704.1.111.6084.1271942101.12.2
	CONTAINS: CONTAINER: CT Acquisition Parameters [SEPARATE]
	CONTAINS: NUM: Exposure Time = 4254 s
	CONTAINS: NUM: Scanning Length = 10 mm
	CONTAINS: NUM: Nominal Single Collimator Width = 0.625 mm
	CONTAINS: NUM: Nominal Total Collimator Width = 1.25 mm
	CONTAINS: NUM: Number of X-ray Sources = 1 X-ray sources
	CONTAINS: CONTAINER: CT X-ray Source Parameters [SEPARATE]
	CONTAINS: CONTAINER: CT Dose [SEPARATE]
	CONTAINS: NUM: Mean CTDIvol = 1.3978125 mGy
	CONTAINS: CODE: CTDIw Phantom Type = IEC Body Dosimetry Phantom
	CONTAINS: NUM: DLP = 16.77375 mGycm
	CONTAINS: CODE: Device Role in Procedure = Irradiating Device
	HAS PROPERTIES: TEXT: Device Manufacturer = Philips
	HAS PROPERTIES: TEXT: Device Model Name = Brilliance 64

CONTAINS: CODE: Source of Dose Information = Automated Data Collection

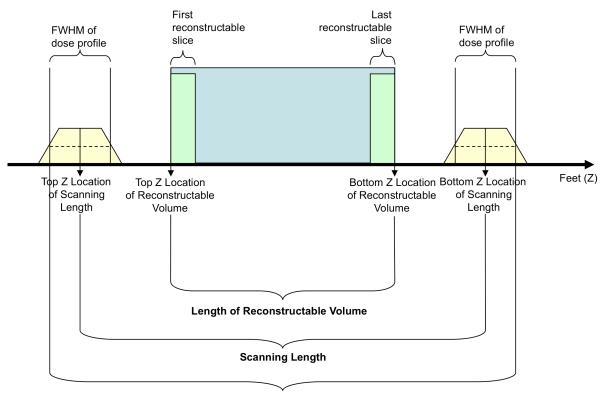
DICOM CT RDSR

CONTAINER: X-Ray Radiation Dose Report [SEPARATE] (DCMR,10011)						
HAS CONCEPT MOD: CODE: Procedure reported = Computed Tomography X-ray						
HAS CONCEPT MOD: CODE: Has Intent = Diagnostic Intent						
HAS OBS CONTEXT: CODE: Observer Type = Device						
HAS OBS CONTEXT: TEXT: Device Observer Name = ilqhfaatc1ws444						
HAS OBS CONTEXT: TEXT: Device Observer Manufacturer = Philips						
HAS OBS CONTEXT: TEXT: Device Observer Model Name = Brilliance 64						
HAS OBS CONTEXT: TEXT: Device Observer Physical Location During Observation = PMSTL						
HAS OBS CONTEXT: DATETIME: Start of X-ray Irradiation = 20100422162839.030						
HAS OBS CONTEXT: CODE: Scope of Accumulation = Study						
HAS PROPERTIES: UIDREF: Study Instance UID = 1.2.840.113704.1.111.6084.1271942101.12						
CONTAINS: CONTAINER: CT Accumulated Dose Data [SEPARATE]						
CONTAINS: NUM: Total Number of Irradiation Events = 2 events						
CONTAINS: NUM CT Dose Length Product Total = 19.67375 mGycm						
CONTAINS: CONTAINER: CT Acquisitions [SEPARATE]						
CONTAINS: CONTAINER: CT Acquisitions [SEPARATE]						
CONTAINS: CODE: Acquisition Type = Sequenced Acquisition						
CONTAINS: CODE: Procedure Context = CT without contrast						
CONTAINS: UIDREF: Irradiation Event UID = 1.2.840.113704.1.111.6084.1271942101.12.2						
CONTAINS: CONTAINER: CT Acquisition Parameters [SEPARATE]						
CONTAINS: NUM: Exposure Time = 4254 s						
CONTAINS: NUM: Scanning Length = 10 mm						
CONTAINS: NUM: Nominal Single Collimator Width = 0.625 mm						
CONTAINS: NUM: Nominal Total Collimator Width = 1.25 mm						
CONTAINS: NUM: Number of X-ray Sources = 1 X-ray sources						
CONTAINS: CONTAINER: CT X-ray Source Parameters [SEPARATE]						
CONTAINS: CONTAINER: CT Dose [SEPARATE]						
CONTAINS: NUM: Mean CTDIvol = 1.3978125 mGy						
CONTAINS: CODE: CTDIw Phantom Type = IEC Body Dosimetry Phantom						
CONTAINS: NUM: DLP = 16.77375 mGycm						
CONTAINS: CODE: Device Role in Procedure = Irradiating Device						
HAS PROPERTIES: TEXT: Device Manufacturer = Philips						
HAS PROPERTIES: TEXT: Device Model Name = Brilliance 64						

CONTAINS: CODE: Source of Dose Information = Automated Data Collection

Dose from Modality - RDSR

Radiation Dose Structured Report

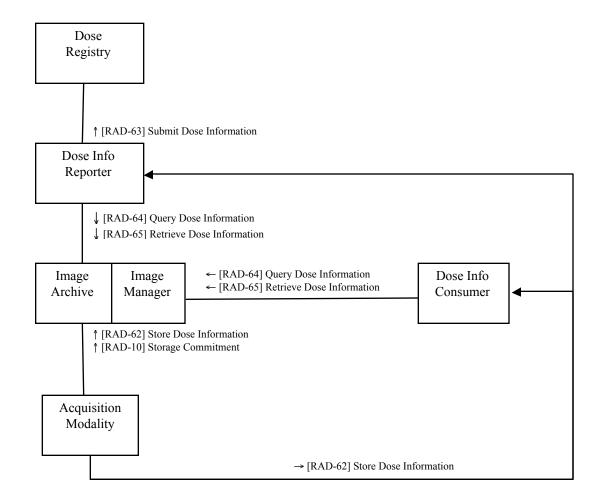

- general structure common to all modalities
- specific content for different modalities
- CT versus projection X-Ray
- fluoroscopy versus individual exposures
- allows for shared infrastructure to manage all ionizing radiation producing diagnostic modalities
- future extension to nuclear medicine & PET

Dose from Modality - RDSR

Radiation Dose Structured Report

- irradiation event: uniquely identified
- scope: event, series, PPS, study
- accumulated & per-event data
- phantom dose required (CTDIvol, DLP)
- effective dose (mSv) optional (ICRP 60, 103)
- per-event acquisition parameters (kV,...)
- standard coded region (anatomy)
- standard coded CT type (sequenced, spiral,...)

RDSR Extensible – CP 1068


Exposed Range

Management – IHE REM

Radiation Exposure Monitoring (REM)

- Integrating the Healthcare Enterprise (IHE)
- profile to specify actors & transactions
- create, store, distribute, report and register
- Modalities create
- PACS (IM/IA) stores
- Dose Information Consumer uses
- Dose Information Reporter sends to Registry

IHE REM Profile

Standards for the Future

Way forward is clear

- all new equipment should encode dose in DICOM Radiation Dose Structured Reports (RDSR)
- all devices should support IHE Radiation Exposure Monitoring (REM) profile, which addresses modality, storage, reporting and registry submission
- Commitment by vendors to update

- "current platform" only

PRODUCT FAMILY	LIGHTSPEED			
Product		Slices	DICOM DOSE SR	DICOM SC
LightSpeed QX/i		4		
LightSpeed (H-power gantry)		4		
LightSpeed Plus (Compact gantry)		4		
LightSpeed Plus (H-power gantry)		4		
LightSpeed Ultra (Compact gantry)		8		
LightSpeed Ultra (H-power gantry)		8		
LightSpeed 16 (Compact gantry)		16		
LightSpeed 16 (H-power gantry)		16		
LightSpeed Pro 32		32		
	07MW11.10	4, 8, 16		
	07BW08.x			
LightSpeed RT	08BW17.7			
	08BW44.1			
	09HW30.4			
	07MW18.4	64		
	08MW33.2	64		
LightSpeed VCT	09MW08.10	64		
	09MW08.11	64		
	10MW06.5	64		

Dilemma

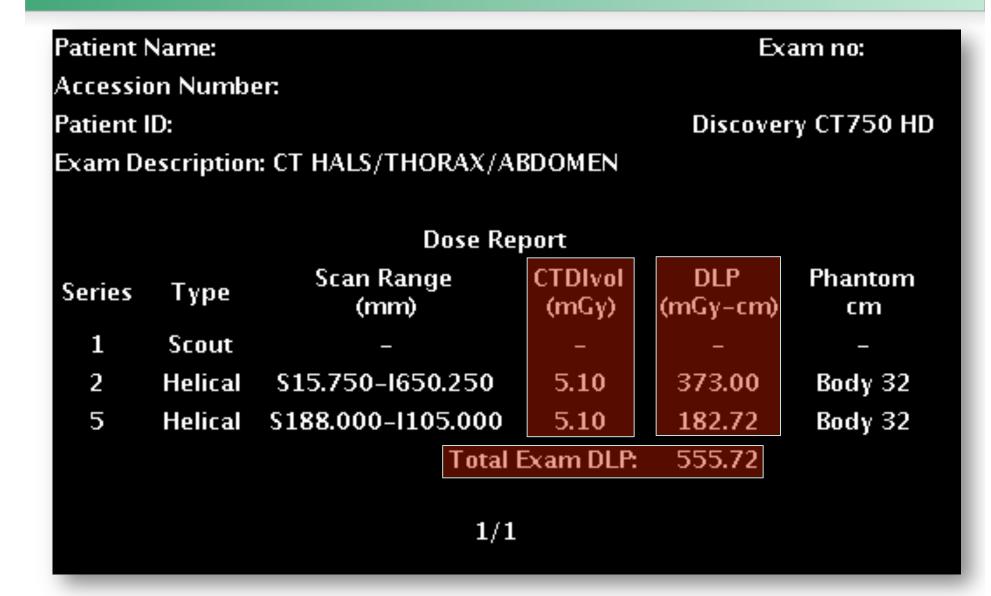
What to do about older scanners

- that are not yet updated, and may never be
- vast majority of global installed base
- what existing capabilities can be leveraged ?
- What about new objects in old PACS ?
 - new modalities may produce RDSR, but ...
 - site has no system to view, aggregate, report
- Even for old images in the archive ...
 - vast collection of reference dose information
 - manual recording is tedious (== expensive)
 - prior data for patients with new studies

Old Scanners

Usually no explicit dose information

- just technique (kVP, mA, etc.)
- scanner-specific dosimetry efforts (ImPACT)


– Garcia MS et al. 2009

- Human-readable "dose screens"
 - CTDIvol and DLP per series & total DLP
 - not (generally) machine-readable
 - can use Optical Character Recognition (OCR)

Dose Screen - GE

Patient	Name:			Exa	am no:
Accessio	on Numb	er:			
Patient	ID:			Discover	y CT750 HD
Exam D	escriptior	: CT HALS/THORAX/A	BDOMEN		
		Dose Re	port		
Series	Туре	Scan Range (mm)	CTDIvol (mGy)	DLP (mGy–cm)	Phantom cm
1	Scout	_	_	_	_
2	Helical	\$15.750-1650.250	5.10	373.00	Body 32
5	Helical	S188.000-I105.000	5.10	182.72	Body 32
		Total	Exam DLP:	555.72	

Key Fields to Extract

Additional Fields to Extract

Patient	Name:			Exa	ım no:
Accessi	on Numb	er:			
Patient	ID:			Discover	y CT750 HE
Exam D	escriptio	n: CT HALS/THORAX/A	BDOMEN		
		Dose Re	port		
Series	Туре	Scan Range	CTDIvol	DLP	Phantom
5225		(mm)	(mGy)	(mGy-cm)	cm
1	Scout	—	-	—	-
2	Helical	S15.750-l650.250	5.10	373.00	Body 32
5	Helical	S188.000-I105.000	5.10	182.72	Body 32
		Total	Exam DLP:	555.72	
		1/1			

Available from "Header"

Patient	Name:			Exa	am no:		
Accessi	on Numb	er:					
Patient	ID:			Discover	ery CT750 HD		
Exam D	escriptior	: CT HALS/THORAX/A	BDOMEN				
		Dose Re	port				
Series	Туре	Scan Range (mm)	CTDIvol (mGy)	DLP (mGy–cm)	Phantom cm		
1	Scout	_	_	-	_		
2	Helical	\$15.750-1650.250	5.10	373.00	Body 32		
5	Helical	S188.000-I105.000	5.10	182.72	Body 32		
		Total	Exam DLP:	555.72			

Dose Screen - Siemens

15-Jul-20							
Ward: Physician: Operator:							
Total mAs 15323	fotal DLP 1	601 mG	y*cm				
	Scan	κv	mAs / ref.	CTDIvol mGy m	DLP iGy*cm	TI s	cSL mm
Patient Position H-SP)						
AP Scout Lateral Scout CCS	1 2 3D	120 120 120	36 mA 36 mA 150	8.49	122	2.7 2.7 0.2	0.6 0.6 3.0

Lateral Scout	2	120	36 mA			2.7	0.6
CCS	3D	120	150	8.49	122	0.2	3.0
Lastiscanino.	10						
PreMonitoring	11	120	20	0.90	1	0.33	10.0
I.V. Bolus							
Monitoring	12	120	20	9.73	10	0.33	10.0
Lastiscanino.	22						
Coronary Angio	23D	120	350	91.74	1468	0.33	06

Key Fields to Extract

15-Jul-20							
Ward: Physician: Operator:							
Total mAs 15323 Tot	tal DLP 16	01 mG	y*cm				
	Scan	κv	mAs / ref.	CTDIvol mGy	DLP mGy*cm	TI s	cSL mm
Patient Position H-SP							
AP Scout	1	120	36 mA			2.7	0.6
Lateral Scout CCS	2 3D	120 120	36 mA 150	8.49	122	2.7 0.2	0.6 3.0
Lastiscanino.	10	120	100	0.43	122	0.2	3.0
PreMonitoring I.V. Bolus	11	120	20	0.90	1	0.33	10.0
Monitoring Last scan no.	12 22	120	20	9.73	10	0.33	10.0
Coronary Angio	23D	120	350	91.74	1468	0.33	0.6

Additional Fields to Extract

15-Jul-20

Ward: Physician: Operator:

Total mAs 15323 Total DLP 1601 mGy*cm

	Scan	κv	mAs / ref.		DLP mGy*cm	TI s	cSL mm
					1110, 0111	Ŭ	
Patient Position H-SP							
AP Scout	1	120	36 mA			2.7	0.6
Lateral Scout	2	120	36 mA			2.7	0.6
CCS	3D	120	150	8.49	122	0.2	3.0
Lastiscanino.	10						
PreMonitoring	11	120	20	0.90	1	0.33	10.0
I.V. Bolus							
Monitoring	12	120	20	9.73	10	0.33	10.0
Last scan no.	22						
Coronary Angio	23D	120	350	91.74	1468	0.33	0.6

Challenges

- Query and retrieval of dose screens
- Extracting sufficient information
 - matching against actual series
 - information from reconstructed images
 - extracting anatomy and procedure
 - extracting phantom information
 - extracting scanning range
 - establishing scope of accumulation
 - absence of an Irradiation Event UID

Challenges - Anatomy

No coded anatomy information present

- legacy scanner consoles
 - no place to select anatomy from standard list
 - not available from Modality Work List (MWL)
 - not copied from protocols
- so Body Part Examined and Anatomic Region
 Sequence usually empty or absent

Attempt to parse plain text

- challenging across multiple languages
- abbreviations and punctuation are problematic
 - C/A/P versus CAP versus Chest/Abdomen/Pelvis

OCR Implementations

- PixelMed (open source, D. Clunie)
 - OCR, toolkit, utilities, services, registry submission
 - <u>http://www.pixelmed.com/</u>
- Radiance (open source, T, Cook UPenn)
 - dose management system, OCR, effective dose
 - <u>http://radiancedose.com</u>
- Valkyrie (G. Shih, Weill-Cornell)
 - unknown
 - Google "Valkyrie George Shih"
 - http://www.weillcornell.org/gshih/

Dose Utility Prototype

$\bigcirc \bigcirc \bigcirc$	Dose Utility
 GRAYTOO_OSIRIX Patient DiscoveryCT750HD WithDoseSRAndScreenShot 83749 Series 4 {CT} LUNG PACS Series 7 {CT} LUNG PACS Series 601 {CT} THO LUNG COR PACS Series 602 {CT} THO LUNG COR PACS Series 605 {CT} THO LUNG AX PACS Series 997 {SR} Dose Record Series 999 {CT} Dose Report 	Local
ModalitiesInStudy PatientAge PatientBirthDate PatientID CT\SR 83749123749219	BitsAllocated BitsStored BurnedInAnnotation Columns ContentDate Imag 16 16 NO 512 20090810 DERI
Configure Log Query Retr	rieve Import View Validate Report
Query – Patient's Name: Discovery* Pati	ient's ID: Study Date:
✓ Retrieve only dose series (498,209) = −1024 HU [0]	lose summary Show detailed log

Dose Utility Prototype

Patient	Name:		Exam no:		
Accessi	on Numb	er:			
Patient	ID:			Discover	y CT750 HD
Exam D	escriptior	n: CT HALS/THORAX/A	BDOMEN		
		Dose Re	port		
Series	Туре	Scan Range (mm)	CTDivol (mGy)	DLP (mGy–cm)	Phantom cm
1	Scout	-	-	-	_
2	Helical	\$15.750-1650.250	5.10	373.00	Body 32
5	Helical	S188.000-I105.000	5.10	182.72	Body 32
		Total	Exam DLP:	555.72	
		1/1			

Reporting started

Dose

2009/08/10 13:03:28 Series=2 Helical Series=5 Helical

CT CT HALS/ S15.750-I650.250 mm S188.000-I105.000 mm

 CT HALS/THORAX/ABDOMEN
 DLP Total=555.72 mGycm

 250 mm
 5.10 mGy
 373.00 mGycmBODY32

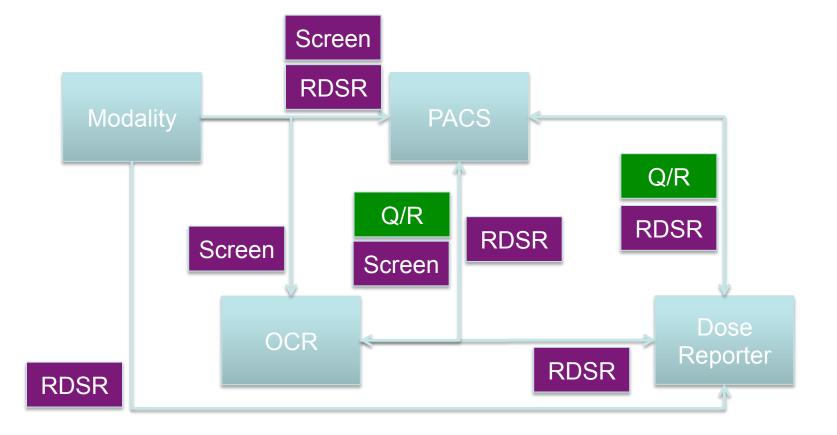
 3.000 mm
 5.10 mGy
 182.72 mGycmBODY32

Reporting complete

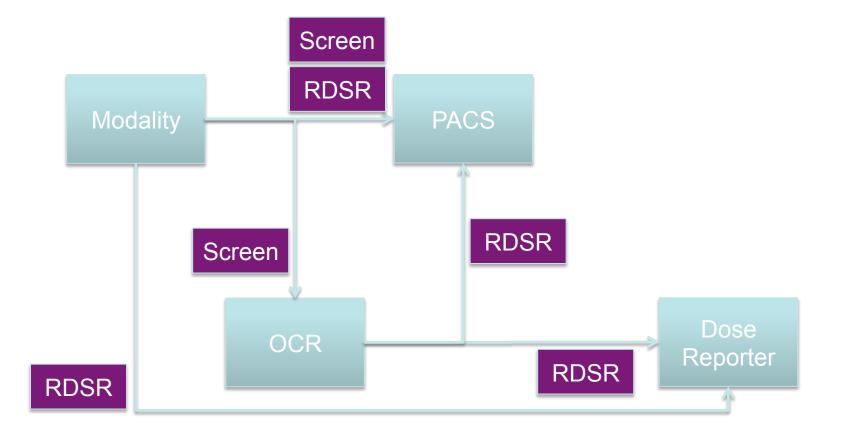
Clear

Dose Utility Prototype

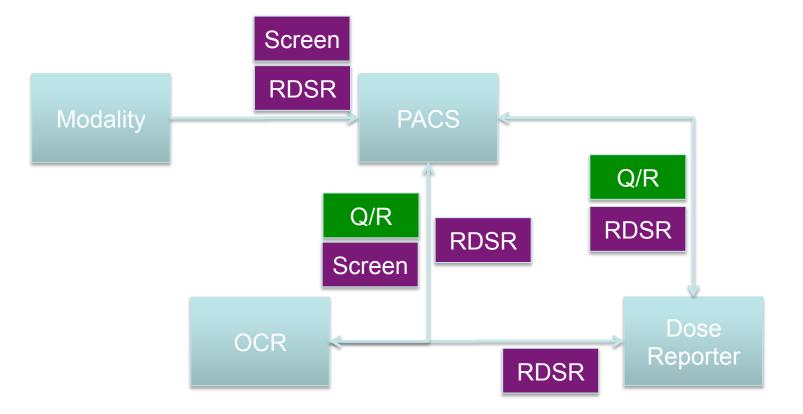
Patient Accessio	on Numb		Exam no:				
Patient	ID:			Discover	ry CT750 HD		
Exam Description: CT HALS/THORAX/ABDOMEN							
		Dose Rep	ort				
Series	Туре	Scan Range (mm)	CTDIvol (mGy)	DLP (mGy–cm)	Phantom cm		
1	Scout	_	_	_	_		
2	Helical	\$15.750-1650.250	5.10	373.00	Body 32		
5	Helical	S188.000-I105.000	5.10	182.72	Body 32		
		Total E	xam DLP:	555.72			
		1/1					
/08/10 13:	03:28	CT CT HALS/	THORAX/ABI	DOMEN DLP To	otal=555.72 mGy		


Reporting started Dose 200

Series=2 Helical Series=5 Helical S15.750-1650.250 mm S188.000-1105.000 mm HORAX/ABDOMEN DLP Total =555.72 mGyo 5.10 mGy 373.00 mGycmBODY32 5.10 mGy 182.72 mGycmBODY32


Reporting complete

Clear


RDSR & OCR Deployment

Push Model

Pull Model

NEMA XR-25 Dose Check

NEMA Standards Publication XR 25-2010

Computed Tomography Dose Check

NEMA XR-25 Dose Check

- Check BEFORE operator irradiates
- Notifications
 - will prescribed scan exceed preset limits ?
- Alerts
 - will delivered + prescribed exceed limits ?
 - also alerts prior to saving protocols
- Override
 - record identity and reason

DICOM + XR-25

- Record Dose Check activity in RDSR
- CP 1047
- Stores
 - configured notification & alert values
 - estimated values
 - CTDIvol and DLP
 - operator identity and reason for override
- Allows for central monitoring

Conclusions

- Regardless of actual risk, perceived risk requires action
- Monitoring and reporting of exposure information is feasible
- CT vendors are cooperating to provide standard information using DICOM RDSR
- Legacy devices can be incorporated through OCR
- National Dose Index Registries can use this information to provide aggregate reporting
- Incorporation in cross-enterprise patient record remains challenging
- CT vendors are also providing "dose check" (NEMA XR-25) at the console to reduce operator error