71st Annual Scientific Congress of JSRT 2015, Yokohama

DICOM Encoding of Dose Information: Standards, Tools and Practicalities

David Clunie (dclunie@dclunie.com) PixelMed Publishing

Background & Disclosures

- Owner, PixelMed Publishing, LLC
- Radiologist
- Independent Consultant
- Editor of DICOM Standard
- Formerly co-chair DICOM Standards Committee
- Formerly co-chair IHE Radiology Technical Committee

DICOM Dose Encoding Learning Objectives

- Goal of DICOM encoding (machine output)
- Radiation Dose Structured Report (RDSR)
- Modalities supported (CT, Projection XR, NM/PET)
- Obsolete mechanisms (image attributes, MPPS)
- Legacy device support OCR of "dose screens"
- Workflow: IHE Radiation Exposure Monitoring (REM)
- Registry submission issues
- De-identification (DICOM standard profile/options)

- AAPM American Association of Physicists in Medicine
- ACR American College of Radiology
- ADT Admission, Discharge, Transfer
- CD Compact Disc
- CID Context Group ID (Value Set)
- CP Correction Proposal
- CT Computed Tomography
- CTDIvol CT Dose Index volume
- CR Computed Radiography
- DAP Dose Area Product
- DCID Defined Context Group ID
- DCM DICOM Controlled Terminology
- DICOM Digital Imaging and Communications in Medicine
- DIR Dose Index Registry (ACR)
- DLP Dose Length Product
- DOB Date of Birth (Patient)
- DSA Digital Subtraction Angiography
- DX Digital X-Ray
- EV Enumerated Value
- FTP File Transfer Protocol
- HL7 Health Level Seven
- HTTP Hypertext Transfer Protocol
- IEC International Electrotechnical Commission
- IHE Integrating the Healthcare Enterprise
- IM/IA Image Manager/Image Archive (IHE)
- MPPS Modality Performed Procedure Step
- MPR Multiplanar Reconstruction
- MWL Modality Worklist

- **Abbreviations**
- NEMA National Electrical Manufacturers Association
- NM Nuclear Medicine
- OCR Optical Character Recognition
- PACS Picture Archiving and Communications System
- PET Positron Emission Tomography
- Q/R Query/Retrieve
- RDSR Radiation Dose Structured Report
- REM Radiation Exposure Monitoring (IHE Profile)
- RIS Radiology Information System
- RRDSR Radiopharmaceutical Radiation Dose Structured Report
- SFTP Secure File Transfer Protocol
- SNOMED Systematized Nomenclature of Medicine
- SOAP Simple Object Access Protocol
- SR Structured Report
- SRT SNOMED Reference Terminology
- SSDE Size-Specific Dose Estimates
- STOW Store Over the Web (DICOM)
- TG Task Group
- TRIAD Transfer of Images and Data
- UCUM Unified Code for Units of Measure
- UID Unique Identifier
- WG Working Group
- XDM Cross-Enterprise Document Media Interchange (IHE Profile)
- XDR Cross-Enterprise Document Reliable Interchange (IHE Profile)
- XDS Cross-Enterprise Document Sharing (IHE Profile)
- XR X-Ray

What is our motivation?

- Assuring minimal dose necessary
- Reducing operator error
- Reducing inappropriate use of imaging
- Improving protocols
- Improving low-dose technology
- Improving surveillance (locally and nationally)
- Greater regulation and reporting
- Better knowledge base

"If you can not measure it, you can not improve it."

Lord Kelvin (William Thomson 1824-1907)

1st President of IEC (International Electrotechnical Commission)

What could we encode?

• What would be absorbed by a phantom

- CTDIvol (mGy)
- DLP (mGy.cm)
- Biological effect of what was absorbed
 - Organ Doses
 - Effective Dose
- Additional risk to patient
 - Lifetime Attributable Risk (of cancer)

Encoding priority for DICOM is the output of the machine

- What would be absorbed by a phantom
 - CTDIvol (mGy)
 - DLP (mGy.cm)
- Biological effect of what was absorbed
 - Organ Dose
 - Effective Dose
- Additional risk to patient
 - Lifetime Attributable Risk (of cancer)

Phantom versus Patient

Record what the machine output

- CTDIvol and DLP describe the output of the scanner as if absorbed by a phantom, not measured in the actual patient
- Extrapolation to real patients
 - requires patient size information
 - impact on organs (tissue weighting factors)
 - assumes knowledge of effect on risk

Additional priority for DICOM is the age/size of the patient

- Record what the machine output
 - CTDIvol and DLP describe the output of the scanner as if absorbed by a phantom, not measured in the actual patient
- Extrapolation to real patients
 - requires patient size information
 - impact on organs (tissue weighting factors)
 - assumes knowledge of effect on risk

Record what we can

- Easy to record
 - per acquisition CTDIvol and DLP
 - total DLP for entire procedure
- Can be recorded
 - standard code/term for procedure type
 - standard code/term for anatomy
 - surrogates for patient size age, height, weight, sex
- Harder to record
 - actual measures of patient size (localizer image?)
 - actual organs exposed and extent (segment images?)

Size from Localizer or Transverse Slice

Segmentation

- Fully automated organ segmentation from axial slices is non-trivial but possible
- Might be useful for more refined tissue factor weighting based estimates of organ dose or total dose rather than depending on nominal procedure type
- Certainly useful for patient-specific Monte Carlo simulations of dose
- Cannot segment beyond reconstructed images (e.g., overranging for helical scans, scatter beyond scan extent), but could be used to scale to fit anthropomorphic phantoms

What the modality produces

- Multiple possible DICOM sources
- Radiation Dose Structured Report (RDSR)
- Modality Performed Procedure Step (MPPS)
- Image "header" attributes
- Dose Screen Image (Optical Character Recognition (OCR))

All new CT scanners produce DICOM Structure Reports

- Multiple possible DICOM sources
- Radiation Dose Structured Report (RDSR)
- Modality Performed Procedure Step (MPPS)
- Image "header" attributes
- Dose Screen Image (Optical Character Recognition (OCR))

All new CT scanners produce DICOM Structure Reports

- Multiple possible DICOM sources
- Radiation Dose Structured Report (RDSR)
- Modality Performed Procedure Step (MPPS)
- Image "header" attributes
- Dose Screen Image (Optical Character Recognition (OCR))

RDSR is the "one true way"

Benefits of Radiation Dose Structured Report (RDSR)

- Persistent document-like object
- Store to PACS, RIS, XDS, CD media
- Extensible, coded, structured content
- Similar to other DICOM "evidence document" for structured content like measurements
- Allows transfer and addition of more content
- Contains accumulated & per event exposure
- Contains detailed technique description

Features of Radiation Dose Structured Report (RDSR)

- General structure common to all modalities
- Specific content for different modalities
- Templates for CT and projection X-Ray
- Fluoroscopy and individual exposures
- Allows a shared infrastructure to manage all ionizing radiation producing diagnostic modalities
- Extended to Nuclear Medicine & PET

SR Content is a Tree

CT RADIATION DOSE SR IOD TEMPLATES

The templates that comprise the CT Radiation Dose SR are interconnected as in Figure A-12

Figure A-12: CT Radiation Dose SR IOD Template Structure

Example DICOM SR Template

TID 10012 CT ACCUMULATED DOSE DATA Type: Extensible Order: Significant

	NL	Rel with	VT	Concept Name	VM	Req	Condition	Value Set Constraint
		Parent				Туре		
1			CONTAINER	EV (113811, DCM, "CT Accumulated Dose Data")	1	М		
2	>	CONTAINS	NUM	EV (113812, DCM, "Total Number of Irradiation Events")	1	М		Units = EV ({events} UCUM, "events")
3	>	CONTAINS	NUM	EV (113813, DCM, "CT Dose Length Product Total")	1	м		Units = EV (mGy.cm, UCUM, "mGy.cm")
4	>	CONTAINS	NUM	EV (113814, DCM, "CT Effective Dose Total")	1	U		Units = EV (mSv, UCUM, "mSv")
5	>>	HAS PROPERTI ES	TEXT	EV (121406,DCM, "Reference Authority")	1	MC	XOR row 6	
6	>>	HAS PROPERTI ES	CODE	EV (121406,DCM, "Reference Authority")	1	MC	XOR row 5	DCID (10015) CT Dose Reference Authority
7	>>	HAS	CODE	EV (G-C036,SRT,	1	М		DCID (10011) Effective

Following slides contain an example of RDSR encoding

- Content "tree" rendered in a human-readable format by test tool, with nesting shown by indentation
- First at SR "content item" (tree node) level
- Then at DICOM attribute level
- Focus on illustrating the encoding of the value of total DLP

CONTAINER: X-Ray Radiation Dose Report [SEPARATE] (DCMR,10011)	
HAS CONCEPT MOD: CODE: Procedure reported = Computed Tomography X-Ray	
HAS OBS CONTEXT: CODE: Observer Type = Device	
HAS OBS CONTEXT: UIDREF: Device Observer UID = 1.3.46.670589.33.1.2200303521616	
HAS OBS CONTEXT: TEXT: Device Observer Name = MACHINE4019	
HAS OBS CONTEXT: TEXT: Device Observer Manufacturer = Philips	
HAS OBS CONTEXT: TEXT: Device Observer Model Name = Ingenuity CT	
HAS OBS CONTEXT: TEXT: Device Observer Serial Number = 1234	
HAS OBS CONTEXT: TEXT: Device Observer Physical Location During Observation = PMSTL	
HAS OBS CONTEXT: DATETIME: Start of X-Ray Irradiation = 20120717090534.295	
HAS OBS CONTEXT: DATETIME: End of X-Ray Irradiation = 20120717090550.572	
HAS OBS CONTEXT: CODE: Scope of Accumulation = Study	
CONTAINS: CONTAINER: CT Accumulated Dose Data [SEPARATE]	
CONTAINS: NUM: Total Number of Irradiation Events = 1 events	
CONTAINS: NUM: CT Dose Length Product Total = 4030.6 mGy.cm	
CONTAINS: CONTAINER: CT Acquisition [SEPARATE]	
CONTAINS: TEXT: Acquisition Protocol = Brain Helical /Head	
CONTAINS: CODE: Target Region = Brain	
CONTAINS: CODE: CT Acquisition Type = Spiral Acquisition	
CONTAINS: CODE: Procedure Context = Diagnostic radiography with contrast media	
CONTAINS: UIDREF: Irradiation Event UID = 1.3.46.670589.33.1.37611252433939500353.3009441819409	2846479
CONTAINS: CONTAINER: CT Acquisition Parameters [SEPARATE]	
CONTAINS: NUM: Exposure Time = 3009 s	
CONTAINS: NUM: Complex Length = 197 mm	

Example of report rendered from example DICOM RDSR

Date	Modality	Description	DLP Total mGy.cm	DLP HEAD16 mGy.cm	DLP BODY32 mGy.cm	Manufacturer	Model	From
2012/07/17 09:05:34	ст	Brain Helical	4030.6 (HEAD16)			Philips	Ingenuity CT	RDSR MOD

Contents of Radiation Dose Structured Report (RDSR)

- Irradiation event: uniquely identified
- Scope: event, series, PPS, study
- Accumulated & per-event data
- Phantom dose required (CTDIvol, DLP)
- Effective dose (mSv) optional (ICRP 60, 103)
- Per-event acquisition parameters (kVP,...)
- Standard coded region (anatomy)
- Standard coded CT type (sequenced, spiral)

RDSR is Extensible: Optional Items added by CPs

- Spatial extent of scan
 - distinguish over-ranging from reconstructed length
 - description of location (patient-relative coordinates)
- NEMA XR25 Dose Check
 - record alerts, notifications and overrides
 - record settings (thresholds)
- Size-Specific Dose Estimates (SSDE)
 - AAPM Task Group 204
 - CTDIvol modified by effective diameter conversion

CP 1068 Scan Location in CT Dose Reports

Exposed Range

But we have a dilemma: scanners without RDSR

- What to do about older scanners?
 - which have not been updated yet, and cannot (will not) be
 - these constitute a large part of global installed base
 - what existing capabilities can be leveraged?
- What about new objects in old PACS?
 - new modalities may produce RDSR, but ...
 - PACS cannot store them
 - site has no system to view, aggregate, report
- What about old (pre-RDSR) studies in the archive?
 - vast collection of (useful) reference dose information
 - manual recording is tedious (== expensive)
 - clinical use of prior data for patients with new studies

Many older scanners produce Dose Screen images

- Multiple possible DICOM sources
- Radiation Dose Structured Report (RDSR)
- Modality Performed Procedure Step (MPPS)
- Image "header" attributes
- Dose Screen Image (Optical Character Recognition (OCR))

One of many "possible wrong ways"

Dose Screen – GE

Patient	Name:	Exam no:						
Accessio	on Numb	er:						
Patient	ID:	Discovery CT750 HD						
Exam D	Exam Description: CT HALS/THORAX/ABDOMEN							
Dose Report								
Series	Туре	Scan Range (mm)	CTDIvol (mGy)	DLP (mGy-cm)	Phantom cm			
1	Scout	_	_	_	_			
2	Helical	\$15.750-1650.250	5.10	373.00	Body 32			
5	Helical	S188.000-I105.000	5.10	182.72	Body 32			
Total Exam DLP: 555.72								

Key Fields to Extract

Patient	Name:	Ex	Exam no:					
Accessio	Accession Number:							
Patient	ID:	Discovery CT750 HD						
Exam D	Exam Description: CT HALS/THORAX/ABDOMEN							
		Dose Re	port					
Series	Tyne	Scan Range	CTDIvol	DLP	Phantom			
Jenes	ւյթշ	(mm)	(mGy)	(mGy–cm)	cm			
1	Scout	—	-	-	-			
2	Helical	S15.750-I650.250	5.10	373.00	Body 32			
5	Helical	S188.000-I105.000	5.10	182.72	Body 32			
Total Exam DLP: 555.72								
	1/1							

Additional Fields to Extract

Patient	Name:	Exam no:							
Accessi	on Numb								
Patient	ID:	Discovery CT750 HD							
Exam D	escriptio								
		Dose Re	port						
Series	Tyne	Scan Range	CTDIvol	DLP	Phantom				
Series	1160	(mm)	(mGy)	(mGy-cm)	cm				
1	Scout	-	-	-	-				
2	Helical	S15.750-I650.250	5.10	373.00	Body 32				
5	Helical	S188.000-I105.000	5.10	182.72	Body 32				
Total Exam DLP: 555.72									
	1/1								

Available from "header"

Patient	Name:		Exam no:						
Accessio	on Numbe	er:							
Patient	ID:		Discovery CT750 HD						
Exam Description: CT HALS/THORAX/ABDOMEN									
	Dose Report								
Series	Туре	Scan Range (mm)	CTDIvol (mGy)	DLP (mGy–cm)	Phantom cm				
1	Scout	-	-	-	_				
2	Helical	S15.750-I650.250	5.10	373.00	Body 32				
5	Helical	S188.000-I105.000	5.10	182.72	Body 32				
		Total	555.72						

Some older scanners produce MPPS

- Multiple possible DICOM sources
- Radiation Dose Structured Report (RDSR)
- Modality Performed Procedure Step (MPPS)
- Image "header" attributes
- Dose Screen Image (Optical Character Recognition (OCR))

Another "possible wrong way"

Modality Performed Procedure Step is Insufficient

- Compared to RDSR, MPPS has:
 - Imited ability to encode complex data
 - is a transient message, nor a persistent object
 - not intended to be "stored" or queried
- Intended to manage scheduling system
 - in that role, perceived as offering little benefit
 - so, not very widely implemented in RIS/PACS

Some older scanners record dose in image attributes

- Multiple possible DICOM sources
- Radiation Dose Structured Report (RDSR)
- Modality Performed Procedure Step (MPPS)
- Image "header" attributes
- Dose Screen Image (Optical Character Recognition (OCR))

Yet another "possible wrong way"

Image "Header" Attributes are Insufficient

Compared to RDSR:

- usually describe technique only
 - kVP, mAs, not usually (mean) CTDIvol
 - not DLP, which spans entire acquisition
- may be multiple reconstructions per exposure
 - soft tissue and bone reconstructions, MPRs
 - might count same dose more than once
- timing of encoding
 - images encoded/sent before acquisition ends

RDSR for other Modalities than CT

Projection X-Ray

- fluoroscopy
- angiography (including cardiac)
- mammography
- "plain" X-Ray fixed & cassette-based
- Radioisotopes
 - Nuclear Medicine
 - PET

Fluoroscopy and Angiography RDSR

• RDSR effort pre-dates CT (2005 v 2007)

- interventional concern skin damage
- uses the measures defined in IEC 61910-1
- accumulated and per event
- dose at reference point, Dose Area Product
- effective dose is a challenge
- Not as widely available in modalities yet
 - some legacy use of MPPS in modalities
 - can extract from MPPS and record in RDSR

Mammography RDSR

- Mammography-specific reference point (RP)
 - versus IEC "interventional reference point" for XA/XRF
- Entrance dose
- Average glandular dose
 - per event and accumulated
- Laterality
 - dose accumulated separately per breast
- Technique
 - filtration, compression, grid
- Breast composition

"Plain" (Projection) X-Ray RDSR

- Recording technique factors is easy
- "Dose" is hard
 - generality of subject & geometry
 - simplicity of systems
- Use measure of detector sensitivity
 - as a "proxy" for the dose delivered
 - was proprietary & machine-specific
 - now standard IEC 62494 Exposure Index (AAPM TG 116)

Radiopharmaceutical Radiation Dose SR (RRDSR)

• New

- relatively recently added to DICOM
- Supplement 159 (June 2014)
- few vendors yet, and no IHE profile yet
- especially important for PET/CT, since at least 50% of dose
- especially important for NM cardiac procedures (very common)

Differences from RDSR

- unlike CT/X-Ray, dose is injected not produced by modality
- so, expected to be created by dose calibrator or in "hot lab" management system (and consumed by modality)
- for legacy support and dose registry submission can be retrospectively extracted from image "header" attributes about dose
- records type, amount, timing and related information

Putting it all together (all the modalities)

Cannot directly compare

CTDIvol and DLP

- Dose Area Product (DAP)
- Average Glandular Dose (for breast)
- radiopharmaceutical dose
- But can record and collate (in registry)
- "Patient Dose SR" DICOM work item
 - DICOM WG 28 (Physics)
 - work on organ dose, effective dose (recording)

Dose Recording Workflow

- DICOM defines the "payload"
 - what to record, how to record it
- IHE defines the workflow
 - which systems do what for which "use case"
- IHE Radiation Exposure Monitoring (REM) Integration Profile
 - modalities produced DICOM RDSR
 - consumers, reporters, registries use them
 - Image Managers/Archives (PACS) store them

IHE REM Profile

IHE REM Profile and Registry

IHE REM Profile and Registry

IHE REM and Dose Registries

RAD-63 Transaction

- Submit Dose Information
 - from Dose Information Reporter
 - to Dose Registry
- payload is DICOM RDSR
- RDSR may need to be de-identified
- various transport mechanisms possible
- May need to send other objects
 - e.g., localizer images for size
 - ? add data to RDSR (e.g., patient size from HL7)

IHE Submit Dose Information – Transport Possibilities

Secure FTP

- originally ACR DIR wanted to use secure FTP (SFTP)
- abandoned ACR now uses proprietary ACR TRIAD system
- no other ftp users remove from IHE REM (CP 200)
- XDR-I
 - SOAP-based HTTP push of DICOM objects (XDS-like)
- DICOM C-STORE
 - conventional DICOM transmission
- DICOM STOW
 - HTTP-based POST of DICOM objects
- XDM
 - email

IHE Submit Dose Information – De-identification

- Makes use of DICOM PS3.15 Annex E
 - Basic Application Level Confidentiality Profile
 - specifies what to remove & retain +/- options
 - Retain Longitudinal Option (dates)
 - Retain Patient Characteristics Option (sex, age, size)
 - Retain Device Information Option (CT machine)
 - Retain UIDs Option
- Special considerations
 - identity buried within RDSR content tree
 - same data submitted multiple times (use UIDs)
 - same patient different studies at different times
 - "safe" private data elements and/or SR content items

Special Challenges for RDSR Submission to Registries

- Recognition of procedure type
 - need to stratify dose by procedure
 - e.g., CT brain without contrast vs. with contrast vs. perfusion vs. other type of CT head (skull base, facial fracture, ...)
 - few sites uses standard codes/text for procedure/anatomy
 - could use JJ1017, SNOMED, LOINC, RadLex Playbook
 - match Study Description text
 - match local codes in Procedure Code Sequence
 - choice to map to standard before or after sending to registry
- Recognition of other relevant variables
 - scan details, e.g., dose modulation, iterative reconstruction

IHE REM only specifies use of DICOM RDSR

Deployment with MPPS and/or OCR as well as RDSR

DICOM Dose Encoding Summary

- DICOM encoding of machine output and relevant patient information
- Preferred mechanism is Radiation Dose Structured Report (RDSR)
- Multiple modalities are supported (not just CT)
- Creation of RDSR for registries from obsolete mechanisms (OCR, of dose screens, image attributes, MPPS)
- IHE Radiation Exposure Monitoring (REM) as basis for workflow (within enterprise and for registry)
- Registry submission transport mechanisms
- De-identification (DICOM standard profile/options)
- Registry submission issues, especially procedure recognition

Final Notes – Useful Links

DICOM Standard for RDSR

- <u>http://dicom.nema.org/medical/dicom/current/output/chtml/part16/ sect_XRayRadiationDoseSRIODTemplates.html</u>
- <u>http://dicom.nema.org/medical/dicom/current/output/chtml/part16/ sect_CTRadiationDoseSRIODTemplates.html</u>
- <u>http://dicom.nema.org/medical/dicom/current/output/chtml/part16/ sect_RadiopharmaceuticaRadiationDoseSRIODTemplates.html</u>
- IHE REM (with links to profile, DICOM standard, and CPs
 - <u>http://wiki.ihe.net/index.php?title=Radiation_Exposure_Monitoring</u>
- DICOM De-identification
 - http://dicom.nema.org/medical/dicom/current/output/chtml/part15/ chapter_E.html
- Medical Imaging Radiation Dose Informatics site/group
 - <u>http://sites.google.com/site/medimgraddoseinformatics/</u>