RSNA 2015 – RCA22
A Practical Introduction to Structured Reporting Tools and Resources

DICOM Structured Reports (SR)

David Clunie (dclunie@dclunie.com)
PixelMed Publishing
Background & Disclosures

- Owner, PixelMed Publishing, LLC
- Radiologist
- Independent Consultant
- Sub-contractor on NCI QIICR project
- Editor of DICOM Standard
- Formerly co-chair DICOM Standards Committee
- Formerly co-chair IHE Radiology Technical Committee
Overview of DICOM SR

- Motivation
- Background and clinical use
- Basic principles
- Research, quantitative imaging, translation
- Templates for measurements
- Coded terminology
Motivation

- **Utility**
 - e.g., extraction of measurements to use in another context, such as automatically merging into another table, database, report or document

- **Semantic Interoperability**
 - standard encoding, recognizable pattern, recognizable codes produced by different systems and consumed by different systems

- **No human required**
 - i.e., “machine readable” without need for OCR or NLP
 - beyond screen shots and “pretty pictures” or uncoded graphics
What is “structure” anyway

- “arrangement of and relations between the parts or elements of something complex” (Oxford)
- Some or all of
 - an organized outline (vs. arbitrary prose)
 - controlled vocabulary/terminology (i.e., coded concepts)
 - measurements related to images and regions of interest
- Distinguish:
 - narrative form (+/- augmented with non-narrative content)
 - structured encoding
What is “structure” anyway

• “arrangement of and relations between the parts or elements of something complex” (Oxford)

• Some or all of
 • an organized outline (vs. arbitrary prose)
 • controlled vocabulary/terminology (i.e., coded concepts)
 • measurements related to images and regions of interest

• Distinguish:
 • narrative form (+/- augmented with non-narrative content)
 • structured encoding
DICOM Structured Report (SR)

- Extends the DICOM standard beyond attributes in "image header"
- Into a “tree” of structured content
- Each tree node (“content item”) is a "name-value" pair
- Or a “container” (provides an outline of “headings”)
- Name is always coded, value may or may not be
- Generic framework - recursively nested content of unbounded complexity
- Complexity constrained for specific use cases by "templates"
SR Content Tree

Parent Node → 1

Relationships → 1 1.1 1.2

Child Nodes
SR Content Tree

- CONTAINER: Imaging Measurement Report [SEPARATE] (DCMR,1500)
 - HAS CONCEPT MOD: CODE: Language of Content Item and Descendants = English
 - HAS CONCEPT MOD: CODE: Country of Language = United States
 - HAS OBS CONTEXT: CODE: Observer Type = Person
 - HAS OBS CONTEXT: PNAME: Person Observer Name = User8
 - HAS CONCEPT MOD: CODE: Procedure reported = PET whole body
 - CONTAINS: CONTAINER: Image Library [SEPARATE] (DCMR,1600)
 - CONTAINS: CONTAINER: Image Library Group [SEPARATE]
 - HAS ACQ CONTEXT: CODE: Modality = Positron emission tomography
 - HAS ACQ CONTEXT: DATE: Study Date = 19860810
 - HAS ACQ CONTEXT: TIME: Study Time = 124529.439000
 - HAS ACQ CONTEXT: DATE: Content Date = 19860810
 - HAS ACQ CONTEXT: TIME: Content Time = 132849.000000
 - HAS ACQ CONTEXT: DATE: Acquisition Date = 19860810
 - HAS ACQ CONTEXT: TIME: Acquisition Time = 131803.409000
 - HAS ACQ CONTEXT: UIDREF: Frame of Reference UID = 1.3.6.1.4.1.14519.5.2.1.2744.7002.14858182664809938988000313184
 - HAS ACQ CONTEXT: NUM: Pixel Data Rows = 128 pixels
 - HAS ACQ CONTEXT: NUM: Pixel Data Columns = 128 pixels
 - HAS ACQ CONTEXT: CODE: Radionuclide = ^18^Fluorine
 - HAS ACQ CONTEXT: CODE: Radiopharmaceutical agent = Fluorodeoxyglucose F^18^
 - CONTAINS: IMAGE: = 1.2.840.10008.5.1.4.1.1.128 : 1.3.6.1.4.1.14519.5.2.1.2744.7002.221784495212110180451913187136
 - CONTAINS: IMAGE: = 1.2.840.10008.5.1.4.1.1.128 : 1.3.6.1.4.1.14519.5.2.1.2744.7002.227723169531643726818780678655
Content Item Encoding

- Container or name-value pair
- Content items have a value type
- Concept name is always coded
- Value may be text or a code depending on value type
- Codes are from external sources or defined in DICOM
- Content items are related by “relationships”
SR Content Item Value Types

- CONTAINER
- TEXT
- CODE
- NUM
- PNAME
- DATE
- TIME
- DATETIME
- UIDREF
- COMPOSITE
- IMAGE
- WAVEFORM
- SCoord
- SCoord3D
- TCOORD
SR Content Item Value Types

- CONTAINER
- TEXT
- CODE
- NUM
- PNAME
- DATE
- TIME
- DATETIME
- UIDREF
- COMPOSITE
- IMAGE
- WAVEFORM
- SCOORD
- SCOORD3D
- TCOORD
SR Content Tree

CONTAINER: Imaging Measurement Report [SEPARATE] (DCMR,1500)

HAS CONCEPT MOD: CODE: Language of Content Item and Descendants = English
 HAS CONCEPT MOD: CODE: Country of Language = United States
 HAS OBS CONTEXT: CODE: Observer Type = Person
 HAS OBS CONTEXT: PNAME: Person Observer Name = User3
 HAS CONCEPT MOD: CODE: Procedure reported = PET whole body

CONTAINS: CONTAINER: Image Library [SEPARATE] (DCMR,1600)

CONTAINS: CONTAINER: Image Library Group [SEPARATE]
 HAS ACQ CONTEXT: CODE: Modality = Positron emission tomography
 HAS ACQ CONTEXT: DATE: Study Date = 19860810
 HAS ACQ CONTEXT: TIME: Study Time = 124529.439000
 HAS ACQ CONTEXT: DATE: Content Date = 19860810
 HAS ACQ CONTEXT: TIME: Content Time = 132849.000000
 HAS ACQ CONTEXT: DATE: Acquisition Date = 19860810
 HAS ACQ CONTEXT: TIME: Acquisition Time = 131803.409000
 HAS ACQ CONTEXT: UIDREF: Frame of Reference UID = 1.3.6.1.4.1.14519.5.2.1.2744.7002.148581826664809938988000313184
 HAS ACQ CONTEXT: NUM: Pixel Data Rows = 128 pixels
 HAS ACQ CONTEXT: NUM: Pixel Data Columns = 128 pixels
 HAS ACQ CONTEXT: CODE: Radionuclide = ^18^Fluorine
 HAS ACQ CONTEXT: CODE: Radiopharmaceutical agent = Fluorodeoxyglucose F^18^\n
CONTAINS: IMAGE: = 1.2.840.10008.5.1.4.1.1.128 : 1.3.6.1.4.1.14519.5.2.1.2744.7002.221784495212110180451913187136
CONTAINS: IMAGE: = 1.2.840.10008.5.1.4.1.1.128 : 1.3.6.1.4.1.14519.5.2.1.2744.7002.227723169531643726818780678655
1.5.1.9: HAS ACQ CONTEXT: NUM: (110910, DCM, "Pixel Data Rows")
 = 128 ({pixels}, UCUM, "pixels")

1.5.1.10: HAS ACQ CONTEXT: NUM: (110911, DCM, "Pixel Data Columns")
 = 128 ({pixels}, UCUM, "pixels")

1.5.1.11: HAS ACQ CONTEXT: CODE: (C-10072, SRT, "Radionuclide")
 = (C-111A1, SRT, "\(^{18}\)Fluorine")

1.5.1.12: HAS ACQ CONTEXT: CODE: (F-61FDB, SRT, "Radiopharmaceutical agent")
 = (C-B1031, SRT, "Fluorodeoxyglucose F\(^{18}\)")
SR Content Item Encoding

1.5.1.9: HAS ACQ CONTEXT: NUM: (110910, DCM, "Pixel Data Rows")

 = 128 ({pixels}, UCUM, "pixels")

1.5.1.10: HAS ACQ CONTEXT: NUM: (110911, DCM, "Pixel Data Columns")

 = 128 ({pixels}, UCUM, "pixels")

1.5.1.11: HAS ACQ CONTEXT: CODE: (C-10072, SRT, "Radionuclide")

 = (C-111A1, SRT, "^18^Fluorine")

1.5.1.12: HAS ACQ CONTEXT: CODE: (F-61FDB, SRT, "Radiopharmaceutical agent")

 = (C-B1031, SRT, "Fluorodeoxyglucose F^18^")
Encoding Codes

- A three-tuple of
 - Code Value
 - Coding Scheme Designator
 - Code Meaning

- E.g.
 - (C-B1031, SRT, "Fluorodeoxyglucose F\(^{18}\)")
Encoding Codes

- A three-tuple of
 - Code Value
 - Coding Scheme Designator
 - Code Meaning

- E.g.
 - (C-B1031, SRT, "Fluorodeoxyglucose F¹⁸")
Encoding Codes

- A three-tuple of:
 - Code Value
 - Coding Scheme Designator
 - Code Meaning

- E.g.
 - (C-B1031, SRT, "Fluorodeoxyglucose F^18^")
Encoding Codes

- A three-tuple of
 - Code Value
 - Coding Scheme Designator
 - Code Meaning

- E.g.
 - (C-B1031, SRT, "Fluorodeoxyglucose F\(^{18}\)")
Which Codes from Where?

- SNOMED codes used by preference throughout DICOM
 - long historical relationship, esp. anatomy
 - agreement to allow license/fee free use in DICOM implementations
 - strong desire for semantic interoperability with clinical (non-imaging) systems that use SNOMED (or UMLS)
 - DICOM contributes imaging content to SNOMED
- LOINC (UMLS)
 - for measurements and report titles
 - now has relationship with SNOMED
- NCI Thesaurus (UMLS)
 - especially for oncology, research and clinical trial concepts not in SNOMED
- Foundational Model of Anatomy (UMLS) and NeuroNames
 - occasional anatomic concepts not in SNOMED (there is a SNOMED-FMA harmonization activity)
- RadLex
 - occasional radiology-specific concepts not in other schemes
- DICOM defined codes ("DCM", in DICOM PS3.16)
 - for imaging-specific not appropriate for (or not yet added to) other schemes
SR Content Item Value Types

- CONTAINER
- TEXT
- CODE
- NUM
- PNAME
- DATE
- TIME
- DATETIME
- UIDREF
- COMPOSITE
- IMAGE
- WAVEFORM
- SCOORD
- SCOORD3D
- TCOORD
Image References

- Identify Image: SOP Instance UID
- Type of Image: SOP Class UID
- [Frame Number] (for multi-frame images)
- [Presentation State]
 - contrast transformations
 - standard grayscale space
 - spatial transformations
2D Spatial Coordinates
Temporal Coordinates

SEGMENT MULTISEGMENT MULTIPOINT POINT

BEGIN END
Temporal & Spatial Coordinates

The diagram illustrates the process of selecting temporal and spatial coordinates. It shows the relationship between an image and the selected coordinates, with specific nodes labeled as TCOORD, SCOORD, and LV outline end systole. The diagram visually represents how these coordinates are extracted from the image.
Complexity and Templates – Real World Applications

- Generic structure needs constraints
 - for specific real world use cases
 - allows for interoperable applications

- Templates specify
 - document title
 - outline (containers, section headings)
 - content by name, value type, possible values
 - what is mandatory, conditional, optional

Real World Applications

- **“Evidence Documents”**
 - Mammography CAD (also Chest, Colon)
 - Echocardiography and Cardiovascular Measurements
 - OB-GYN Ultrasound Reports
 - Radiation Dose (RDSR)
- **Radiology reports**
 - Basic Diagnostic Imaging Report
 - IHE Simple Image and Numeric Report (SINR) Profile
 - Transcribed Diagnostic Imaging Report
- **Key Object Selection (KOS) (IHE Key Image Note (KIN))**
<table>
<thead>
<tr>
<th>Series</th>
<th>Type</th>
<th>Scan Range (mm)</th>
<th>CTDIvol (mGy)</th>
<th>DLP (mGy·cm)</th>
<th>Phantom cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scout</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Helical</td>
<td>$15.750–1650.250</td>
<td>5.10</td>
<td>373.00</td>
<td>Body 32</td>
</tr>
<tr>
<td>5</td>
<td>Helical</td>
<td>$188.000–105.000</td>
<td>5.10</td>
<td>182.72</td>
<td>Body 32</td>
</tr>
</tbody>
</table>

Total Exam DLP: 555.72
DICOM SR as Input, Output or Both

Evidence Document SR

DICOM Images from Modality

Voice Recognition System

Report SR

Image from David Weiss, Aunt Minnie 2013/01/18
Quantitative Imaging Research Applications

- Current real world use of "evidence documents"
 - e.g., off US carts
 - has not really leveraged the image relationship
 - often flat lists of numbers without image coordinate references

- Can do better for
 - advanced applications in all cross-sectional modalities
 - esp. interactive 3D and multi-modality (PET-CT) applications
 - save and recover semantic state of visualization using DICOM SR

- Two approaches
 - per-application specific templates (e.g., CT cardiovascular measurements)
 - sufficiently robust generic measurement templates for class of applications
TID 1500 Measurement Report

- “Goldilocks” approach
 - find the "sweet spot" of quantitative data recording for both clinical and research use
 - not too simple
 - not too complicated
 - just right - measurements of ROIs on images encoded as contours or segmentations +/- qualitative statements
Explanation of TID 1500

- Document title
- Image library
 - relevant characteristics of images used, e.g., radiopharmaceutical
- List of ROIs with measurements
 - planar, volumetric, other types
- List of qualitative (categorical) evaluations
 - i.e., coded questions, code or text values
ROI Measurement Groups

- Session (e.g., for multiple reads by same reader)
- Tracking identifier (e.g., "lesion 1") + UID
- Finding type (e.g., lesion, tumor, reference region)
- Time point (e.g., for longitudinal comparison baseline, prior, current)
- Measurement method (e.g. "SUVbw") (common to all measurements)
- Target site (anatomic location) (common to all measurements)
- Coordinates, segmentation references, image references defining ROI
- List of measurements derived from the ROI
- List of qualitative evaluations
Each ROI Measurement

- Coded concept, numeric value, coded units (e.g., Volume = 33 mm3)
- Modifiers for concept name of measurement
- Measurement method (e.g., “SUVbw”)
- Measurement derivation (e.g., “mean”)
- Target site (anatomic location)
- Equation
- Reference authority
- Range authority
- Derivation parameter
<table>
<thead>
<tr>
<th>NL</th>
<th>Rel with Parent</th>
<th>VT</th>
<th>Concept Name</th>
<th>VM</th>
<th>Req Type</th>
<th>Condition</th>
<th>Value Set Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>CONTAINER</td>
<td>EV (125007, DCM, "Measurement Group")</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>></td>
<td>HAS OBS CONTEXT</td>
<td>TEXT EV (C67447, NCIt, "Activity Session")</td>
<td>1</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>></td>
<td>HAS OBS CONTEXT</td>
<td>TEXT DT (112039, DCM, "Tracking Identifier")</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>></td>
<td>HAS OBS CONTEXT</td>
<td>UIDREF EV (112040, DCM, "Tracking Unique Identifier")</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>></td>
<td>CONTAINS CODE</td>
<td>EV (121071, DCM, "Finding")</td>
<td>1</td>
<td>U</td>
<td></td>
<td>$FindingType</td>
</tr>
<tr>
<td>4</td>
<td>></td>
<td>CONTAINS INCLUDE</td>
<td>DTID 1502 "Time Point Context"</td>
<td>1</td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>></td>
<td>CONTAINS SCOORD</td>
<td>EV (111030, DCM, "Image Region")</td>
<td>1-n</td>
<td>MC</td>
<td>XOR Rows 7, 10</td>
<td>GRAPHIC TYPE = not {MULTIPOINT}</td>
</tr>
<tr>
<td>6</td>
<td>>></td>
<td>SELECTED FROM IMAGE</td>
<td>EV (121191, DCM, "Referenced Segment")</td>
<td>1</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>></td>
<td>CONTAINS IMAGE</td>
<td>EV (121233, DCM, "Source image for segmentation")</td>
<td>1</td>
<td>MC</td>
<td>XOR Rows 5, 10</td>
<td>Reference shall be to a Segmentation Image or Surface Segmentation object, with a single value specified in Referenced Segment Number</td>
</tr>
<tr>
<td>8</td>
<td>></td>
<td>CONTAINS IMAGE</td>
<td>EV (121233, DCM, "Source image for segmentation")</td>
<td>1-n</td>
<td>MC</td>
<td>XOR Row 9 and IFF Row 7</td>
<td></td>
</tr>
</tbody>
</table>
CONTAINS: Imaging Measurements [SEPARATE]

CONTAINS: CONTAINER: Measurement Group [SEPARATE] (DCMR,1411)

HAS OBS CONTEXT: TEXT: Activity Session = 2
HAS OBS CONTEXT: TEXT: Tracking Identifier = primary tumor
HAS OBS CONTEXT: UIDREF: Tracking Unique Identifier = 2.25.321931685067302978142568823813987841964
CONTAINS: CODE: Finding = Neoplasm, Primary
HAS OBS CONTEXT: TEXT: Time Point = 1
CONTAINS: IMAGE: Referenced Segment = 1.2.840.10008.5.1.4.1.166.4 : 1.2.276.0.7230010.3.1.4.8323329.22968.1436800951.875753[Segment 1]
CONTAINS: UIDREF: Source series for image segmentation = 1.3.6.1.4.1.14519.5.2.1.2744.7002.117357550898198415937979788256
CONTAINS: COMPOSITE: Real World Value Map used for measurement = 1.2.840.10008.5.1.4.1.166.4 : 1.2.276.0.7230010.3.1.4.8323329.21218.1436800935.45195
HAS CONCEPT MOD: CODE: Measurement Method = SUV body weight calculation method
HAS CONCEPT MOD: CODE: Finding Site = base of tongue

CONTAINS: NUM: SUVbw = 3.58285 Standardized Uptake Value body weight
HAS CONCEPT MOD: CODE: Derivation = Mean

CONTAINS: NUM: SUVbw = 3.17526 Standardized Uptake Value body weight
HAS CONCEPT MOD: CODE: Derivation = Minimum

CONTAINS: NUM: SUVbw = 4.42643 Standardized Uptake Value body weight
HAS CONCEPT MOD: CODE: Derivation = Maximum

CONTAINS: NUM: Volume = 3.21039 Milliliter
HAS CONCEPT MOD: CODE: Measurement Method = Sum of segmented voxel volumes
CONTAINS: NUM: Total Lesion Glycolysis = 11.5024 Gram

CONTAINS: NUM: SUVbw = 0.253951 Standardized Uptake Value body weight
HAS CONCEPT MOD: CODE: Derivation = Standard Deviation

CONTAINS: NUM: SUVbw = 3.38131 Standardized Uptake Value body weight
HAS CONCEPT MOD: CODE: Derivation = 25th Percentile Value

CONTAINS: NUM: SUVbw = 3.49684 Standardized Uptake Value body weight
HAS CONCEPT MOD: CODE: Derivation = Median

CONTAINS: NUM: SUVbw = 3.72015 Standardized Uptake Value body weight
HAS CONCEPT MOD: CODE: Derivation = 75th Percentile Value

CONTAINS: NUM: SUVbw = 4.21502 Standardized Uptake Value body weight
HAS CONCEPT MOD: CODE: Derivation = Upper Adjacent Value

CONTAINS: NUM: SUVbw = 3.59184 Standardized Uptake Value body weight
HAS CONCEPT MOD: CODE: Derivation = RMS
CONTAINS: NUM: Glycolysis Within First Quarter of Intensity Range = 4.98963 Gram
CONTAINS: NUM: Glycolysis Within Second Quarter of Intensity Range = 4.30593 Gram
Source series for image segmentation:
1.3.6.1.4.1.14519.5.2.1.2744.7002.117357550898198415937979788256
Real World Value Map used for measurement:
RealWorldValueMappingStorage

Concept Modifier: Measurement Method = SUV body weight calculation method (126410, DCM)
Concept Modifier: Finding Site = base of tongue (T-53131, SRT)

SUVbw:
3.58285 \((\text{SUVbw})/\text{ml} \)
Concept Modifier: Derivation = Mean (R-00317, SRT)

SUVbw:
3.17526 \((\text{SUVbw})/\text{ml} \)
Concept Modifier: Derivation = Minimum (R-404FB, SRT)

SUVbw:
4.42643 \((\text{SUVbw})/\text{ml} \)
Concept Modifier: Derivation = Maximum (G-A437, SRT)

Volume:
3.21639 ml
Concept Modifier: Derivation = Sum of segmented voxel volumes (126030, DCM)

Total Lesion Glycolysis:
11.5024 g
Conclusion

- DICOM SR has a long history of solving clinical measurement and annotation problems
- Provides a reusable framework for semantic interoperability for all medical image related use cases
- As such is highly appropriate for all clinical and research quantitative imaging measurement problems
- Generic “region of interest measurement” use case addressed by a specific template
Tools Used

- **Visualization of DICOM SR Content Tree**
 - `com.pixelmed.dicom.StructuredReportBrowser`
 - in PixelMed Java DICOM toolkit (also contains SR API, SR<->XML conversion)

- **Text rendering of DICOM SR**
 - `dcsrdump` utility
 - in dicom3tools
 - http://www.dclunie.com/dicom3tools/

- **HTML rendering of DICOM SR shown running in OsiriX**
 - `dscrt2html` utility in OFFIS dcmtk DICOM toolkit (also contains SR API, SR<->XML)
 - http://www.dcmtk.org/