Motivation

• Need to distribute results for review
• Create with multiple tools in different formats
• Reviewers without access to original tool
• Measurement technique comparisons
• Imaging bio-marker development/testing
• Image-based clinical trials, esp. oncology
• Change in measurements over time
• Clinical practice for individual patients
Results Characteristics

• What is recorded?
 – measurements – distance, volume, density, etc.
 – coordinates – what region on image measured

• Context?
 – identification of subject (patient), lesion, etc.
 – identification of reader
 – identification of technique
 – position in time (change over time, no change)
Results Organization

- Single object per measurement
- Single object for all measurements at one time
- Single object per reader per time point
- Single object per reader all time points
- Single object per image with all measurements for all readers
- ...

Use-Cases

• QIBA CT Volumetry 1B Round 2
 – lung cancer volume measurement
 – multiple independent readers
 – two time points
 – some cases no change, some with change
 – volume & automatically derived distance
 • standard DICOM SR and DICOM Segmentation format
 • clinical trials results information model
 • organized as one object per lesion per reader
 – reading tool is not distributable for review
Use-Cases

- QIBA CT Volumetry 1A
 - phantom lung nodules differing size and shape
 - multiple independent readers
 - one time point
 - two different (incompatible) reading tools used
 - distance
 - proprietary format
 - one object per image containing multiple readers & lesions
 - volume
 - variant of DICOM RT Structure Set
 - one object per reader per lesion
 - reading tools are not distributable for review
Hierarchical Model

• Subject
 – Reader
 • Time Point
 – Lesion
 » Region (→ link to image coords)
 • Measurement (e.g., Volume)
Hierarchical Model

- Subject = 0001
 - Reader = 1
 - Time Point = 2010/06/01
 - Lesion = 1
 » Volume = 355 mm³
 - Lesion = 2
 » Volume = 3896 mm³
 - Time Point = 2011/07/01
 - Lesion = 1
 » Volume = 471 mm³
 - Lesion = 2
 » Volume = 3801 mm³
 - Reader = 2
 - ...

One Annotation Per File

- Subject = 0001
 - Reader = 1
 - Time Point = 2010/06/01
 - Lesion = 1
 » Volume = 355 mm³
 - Lesion = 2
 » Volume = 3896 mm³
 - Time Point = 2011/07/01
 - Lesion = 1
 » Volume = 471 mm³
 - Lesion = 2
 » Volume = 3801 mm³
 - Reader = 2
 - ...
One Time Point Per File

- Subject = 0001
 - Reader = 1
 - Time Point = 2010/06/01
 - Lesion = 1
 » Volume = 355 mm³
 - Lesion = 2
 » Volume = 3896 mm³
 - Time Point = 2011/07/01
 - Lesion = 1
 » Volume = 471 mm³
 - Lesion = 2
 » Volume = 3801 mm³
 - Reader = 2
 - ...

One Reader per Subject Per File

- Subject = 0001
 - Reader = 1
 - Time Point = 2010/06/01
 - Lesion = 1
 » Volume = 355 mm³
 - Lesion = 2
 » Volume = 3896 mm³
 - Time Point = 2011/07/01
 - Lesion = 1
 » Volume = 471 mm³
 - Lesion = 2
 » Volume = 3801 mm³
 - Reader = 2
 - ...

<table>
<thead>
<tr>
<th>Subject</th>
<th>Reader</th>
<th>Time Point</th>
<th>Lesion</th>
<th>Volume mm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>Reader 1</td>
<td>2010/06/01</td>
<td>1</td>
<td>355</td>
</tr>
<tr>
<td>0001</td>
<td>Reader 2</td>
<td>2010/06/01</td>
<td>1</td>
<td>375</td>
</tr>
<tr>
<td>0001</td>
<td>Reader 1</td>
<td>2010/06/01</td>
<td>2</td>
<td>3896</td>
</tr>
<tr>
<td>0001</td>
<td>Reader 2</td>
<td>2010/06/01</td>
<td>2</td>
<td>4764</td>
</tr>
<tr>
<td>0001</td>
<td>Reader 1</td>
<td>2011/07/01</td>
<td>1</td>
<td>471</td>
</tr>
<tr>
<td>0001</td>
<td>Reader 2</td>
<td>2011/07/01</td>
<td>1</td>
<td>289</td>
</tr>
<tr>
<td>0001</td>
<td>Reader 1</td>
<td>2011/07/01</td>
<td>2</td>
<td>3801</td>
</tr>
</tbody>
</table>
Tabular Presentation

• Can be sorted by different columns
• Easy to add derived computations
 – e.g., % difference from mean volume
• Exportable to spreadsheet tools (e.g., Excel)
• Exportable to statistical tools (e.g., R)
• Easy to feed selected columns to chart tools
• Cells and rows can be hyperlinked to images
 – e.g., hyperlink a volume to the ROI outline
Structured vs. Unstructured

- **Structured input defines individual elements**
 - Measurements are recorded
 - As opposed to recalculated from coordinates each time
 - Measurements & units distinct & related to image
 - Coordinates linked to measurement
 - Different types of measurement coded (not free text)
 - Individual context elements distinct
 - E.g., patient, lesion, reader encoded separately

- **Unstructured annotations**
 - User enters free text (e.g., “Reader 1 Lesion 1”)
 - Text and coordinates linked, or
 - Text and coordinates co-located but not linked
Results Formats

• DICOM Structured Reports
 – general purpose hierarchical data format
 – primitives for codes, measurements, coordinates
 – references to images, segmentations
 – needs a “template” to define information model
 – no widely adopted standard templates for oncology quantitative measurements over time
 – author has defined template for internal use in contract research, and has reused it for QIBA
Results Formats

• DICOM Segmentations
 – rasterized (pixel array) of values matching image
 – encoding of lesions
 • Binary - which voxels are included in lesion
 • Probability maps – probability voxel is included
 – encoding of “label maps”
 • E.g., atlas of tissue types corresponding to voxels
 – does not contain measurements
 • intended to be referenced from a DICOM SR
DICOM RT Structure Sets

- Developed for and long history of use with Radio-Therapy Planning applications
- Generic mechanism for 3D contours
 - set of coplanar iso-contours
 - 3D patient-relative coordinates
- Image co-ordinates
 - often 1:1 correspondence of 3 coordinate with original image slices and voxels (though not required)
- Measurements
 - very limited, if any, measurements in file
 - recalculated on re-loading
 - could be referenced from a DICOM SR (though unusual)
DICOM Presentation States

- Intended for rendering, not interpretation
- Commonly implemented in PACS for simple annotation capture
- Unstructured
 - text and graphics are not semantically linked
 - text is free text, not coded, and no structured measurements
 - with discipline entering text, structured content can be parsed from free text retrospectively
Process Flow

• Create DICOM SR
 – that conform to a basic template
 – subject/reader/time point lesion/measurement

• Tabulate results
 – include hyperlinks to rendered images with ROIs
 – compute any derived statistics

• Generate charts from tables
 – e.g., scatter plots, waterfall plots
Process Flow

• ROIs
 – if SR references segmentation, use it
 – if SR contains coordinates (2D or 3D), use them
 – if not, convert coordinates to SR coordinates
 • e.g., RT Structure Set 3D coordinates to SR 2D
 – if not, convert raster to segmentation
 • e.g., LIDC Max tool PMAP to DICOM SEG

• Image Library
 – extract image characteristics for re-use
 – e.g., position, orientation, spacing, UIDs
 – store in SR Image Library template
 – saves repeating this (reading image headers) many times
Earlier Work by Others

• Aberle 1996 – Thoracic Oncology Imaging Timeline (OITL)
 – regions of interest defined during reporting
 – change in lesion size over time for single patient
 – table of lesion size
 – graphs of size change
 – visualization of size change

http://radiographics.rsna.org/content/16/3/669
Aberle 1996 - OITL
Aberle 1996 - OITL
Earlier Work by Others

• Bui 2007 – TimeLine
 – more generalized, configurable approach
 – data access and integration
 – data mapping, reorganization and clustering
 – hierarchical problem-centric views
 – emphasis on temporal chronologies & clustering
 – adaptable format mapping methods

http://dx.doi.org/10.1109/TITB.2006.884365
Bui 2007 - TimeLine
Earlier Work by Others

- Levy 2007 – LesionViewer
 - serial oncology studies
 - anatomical summary of lesion location
 - direct navigation to visualization of location
 - temporal abstraction of lesion behavior

http://dx.doi.org/10.1109/TITB.2006.884365
Levy 2007 - LesionViewer

Name: Wilson, Mark
MR Number: 55555555

Date: 03/28/06
CT Chest, Abdomen and Pelvis
Pulmonary Nodule
Dimension: 0.7cm

Date: 08/3/06
CT Chest, Abdomen and Pelvis
Pulmonary Nodule
Dimension: 0.8cm

Date: 10/10/06
CT Chest, Abdomen and Pelvis
Pulmonary Nodule
Dimension: 1.0cm

Lesion ID: 2
Location: Upper Lobe of Right Lung
Description: Pulmonary Nodule
Dimension: 0.8cm
Levy 2007 - LesionViewer

Name: Williams, Laura
MR Number: 44444444
Earlier Work by Others

- AVT 2009 – Algorithm Validation Toolkit
 - NCI caBIG *in vivo* Imaging Workspace project
 - Measurement Variability Tookit (MVT) component
 - tabulation and charting
 - interface with R statistics package
 - only supports proprietary NCI AIM format

Disclosure: author was involved in AVT RFP and sub-contractor to Siemens Corporate Research on AVT use-case development and testing

https://wiki.nci.nih.gov/display/AVT/Algorithm+Validation+Toolkit+%28AVT%29+Project+Pages
Computation Results

<table>
<thead>
<tr>
<th>Subject Name</th>
<th>Rel Vol Difference</th>
<th>Surf Distance (Average)</th>
<th>Surf Distance (RMS)</th>
<th>Surf Distance (Max)</th>
<th>Volume Overlap [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTS_IMG01</td>
<td>1.33747</td>
<td>0.33584</td>
<td>0.51345</td>
<td>5.1723</td>
<td>93.3901</td>
</tr>
<tr>
<td>LTS_IMG02</td>
<td>8.63715</td>
<td>7.96008</td>
<td>8.99004</td>
<td>18.2481</td>
<td>9.685699</td>
</tr>
<tr>
<td>LTS_IMG03</td>
<td>11.4308</td>
<td>9.56007</td>
<td>8.85003</td>
<td>2.6348</td>
<td>26.4587</td>
</tr>
<tr>
<td>LTS_IMG04</td>
<td>5.70567</td>
<td>1.76527</td>
<td>2.77775</td>
<td>15.327</td>
<td>72.87126</td>
</tr>
<tr>
<td>LTS_IMG05</td>
<td>24.5516</td>
<td>2.60058</td>
<td>3.04656</td>
<td>3.1532</td>
<td>67.9236</td>
</tr>
<tr>
<td>LTS_IMG06</td>
<td>18.1359</td>
<td>0.592667</td>
<td>0.89424</td>
<td>26.0819</td>
<td>47.2082</td>
</tr>
<tr>
<td>LTS_IMG07</td>
<td>48.2725</td>
<td>8.57166</td>
<td>10.012</td>
<td>26.0819</td>
<td>47.2082</td>
</tr>
<tr>
<td>LTS_IMG08</td>
<td>44.4143</td>
<td>7.37036</td>
<td>8.67253</td>
<td>22.3928</td>
<td>47.0522</td>
</tr>
<tr>
<td>LTS_IMG09</td>
<td>97.8156</td>
<td>2.70238</td>
<td>3.91401</td>
<td>13.258</td>
<td>49.0714</td>
</tr>
<tr>
<td>LTS_IMG10</td>
<td>25.8335</td>
<td>1.66703</td>
<td>2.21645</td>
<td>7.3086</td>
<td>59.5749</td>
</tr>
<tr>
<td>Mean</td>
<td>34.4392</td>
<td>3.37285</td>
<td>4.2694</td>
<td>12.1625</td>
<td>51.0792</td>
</tr>
<tr>
<td>SD</td>
<td>32.8547</td>
<td>3.19619</td>
<td>3.63071</td>
<td>8.4135</td>
<td>25.6128</td>
</tr>
<tr>
<td>CV</td>
<td>0.942774</td>
<td>0.94765</td>
<td>0.850403</td>
<td>0.691343</td>
<td>0.386592</td>
</tr>
</tbody>
</table>

Statistics Analysis

- **Methods:** Add, Custom, Del
- **Comparison to be Analyzed:** Mean, All Measurements
- **Statistical Method:** Mean, SD, CV

Outlier Analysis

- **Threshold:** Add, Del
- **Comparison to be Analyzed:** Relative Volume Difference, Surface Distance (RMS), Volume Overlap
- **Outlier Criteria:** Top 25%, Bottom 25%

Plotting

- **Charts:** Add, Del
- **Plotting title:** Blond-Altmann of Volume, Scatter of Volume, Surface Distance (RMS)

Images

Nominal GT

Annotation