New Enhanced Multi-frame DICOM CT and MR Objects to Enhance Performance and Image Processing on PACS and Workstations
David Clunie, RadPharm

Charles Parisot, GE Healthcare

Kees Verduin, Philips Medical Systems

Bernhard Hassold, Siemens Medical Solutions
Greater Expectations

- Previously, users content with viewing + annotations
- Increasingly advanced applications
 - Hanging protocols, MPR, 3D, virtual colonoscopy
 - Perfusion, diffusion, functional MR, spectroscopy
 - Cardiac cine, CT and MR fluoroscopy
 - Lung CAD
- Such applications are often vendor-specific
 - Performed on console or same vendor’s workstation
 - Depend on private attributes
- Want advanced application interoperability
- Support in multi-vendor PACS workstations
- Distributing “screen saves” on PACS insufficient
Why are new objects needed?

- CT and MR objects more than 10 years old
 - Technology on which they are based probably more than 15 years old
- Pre-date many technological advances
 - Helical CT & fast spin echo pulse sequences
- Explosion in data set size -> performance?
 - Multi-detector CT and functional MR
- Expectations beyond simple viewing
 - Hanging protocols & advanced applications
New Multi-frame CT & MT

- Potential performance gain during transfer & loading
- Easier access to organized multi-slice data
- Preservation of intended semantics of acquisition (e.g. a volume set, a cine run)
- More extensive, up-to-date acquisition parameters
- Additional features for special acquisition and analysis types
 - color values, e.g. for functional data overlaid on structure
 - real world value mapping, e.g. ADC, velocity
- Specialized data interchange, and central archiving
 - Spectroscopy and raw data
Performance Opportunities

- New multi-frame object does not change
 - TCP connection establishment
 - Association establishment
- Common header information is not repeated
 - But reduction is negligible compared to pixel data size
- Reduced latency (delay) between storage requests
- Creates opportunity for inter-slice (3D) compression
- Extremely implementation-dependent
Dataset (attributes+pixels)

C-Store request

C-Store response (acknowledgement)
Association

DB

UIDs

Store, parse, check

C-Store request

Dataset (attributes+pixels)

C-Store response (acknowledgement)
Dataset (attributes+pixels)

C-Store request

Dataset (attributes+pixels)

C-Store response (acknowledgement)
Dataset (attributes+pixels)

C-Store request

C-Store response (acknowledgement)

UIDs

Store, parse, check
Dataset (attributes+pixels)
C-Store response (acknowledgement)
C-Store request

UIDs
Store, parse, check

Association

DB

DB

DB

DB

C-Store response (acknowledgement)
Dataset (attributes+pixels)
C-Store request

Association

UIDs

Store, parse, check
CTA - 548x512x512 (275MB) File read/transfer/save (GB Ethernet)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi Frame</td>
<td>11.14111111</td>
<td>14.86703704</td>
<td>13.07333333</td>
</tr>
<tr>
<td>Single Frame</td>
<td>16.905</td>
<td>17.97</td>
<td>23.42666667</td>
</tr>
</tbody>
</table>
Lossless JPEG 2000 Compression (Alexis Tzannes, Aware, 2003)

<table>
<thead>
<tr>
<th>Slices in 3rd dimension</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>single</td>
<td>2.073490814</td>
</tr>
<tr>
<td>20</td>
<td>2.415902141</td>
</tr>
<tr>
<td>40</td>
<td>2.430769231</td>
</tr>
<tr>
<td>80</td>
<td>2.438271605</td>
</tr>
<tr>
<td>all</td>
<td>2.445820433</td>
</tr>
</tbody>
</table>

- 127x256x8 7.9MB
- 449x512x16 224MB
- 620x512x16 310MB
Organizational Features

- Multi-frame pixel data
- Comprehensive, mandatory, coded attributes
- Shared and per-frame functional groups
 - Compact & makes explicit what doesn’t change
- Dimensions
 - \textit{a priori} hints as to how the frames are organized
- Stacks
- Temporal positions
- Concatenations
 - Reasonable size chunks, viewing in batches as acquired
Multi-frame Functional Groups

- Shared attributes
- Per-frame attributes
- Pixel data
Concatenations
Robust Application Support

• More technique-specific attributes
 – Majority of them mandatory for original images

• More technique-specific terms
 – Categorizing acquisition types
 – Describing acquisition parameters

• Less dependence on private attributes

• Better organization of data
<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP Class</td>
<td>Original</td>
<td>Enhanced</td>
</tr>
<tr>
<td>Attributes (Mandatory)</td>
<td>18 (0)</td>
<td>41 (39)</td>
</tr>
<tr>
<td>Terms (Enumerated)</td>
<td>4 (2)</td>
<td>86 (18)</td>
</tr>
<tr>
<td></td>
<td>Original</td>
<td>Enhanced</td>
</tr>
<tr>
<td>Attributes (Mandatory)</td>
<td>44 (2)</td>
<td>103 (94)</td>
</tr>
<tr>
<td>Terms (Enumerated)</td>
<td>38 (9)</td>
<td>228 (47)</td>
</tr>
</tbody>
</table>
CT Image Type Value 3

• Original SOP Class
 – AXIAL or LOCALIZER

• Enhanced SOP Class
 – Common to CT and MR
 ➢ ANGIO, FLUOROSCOPY, LOCALIZER, MOTION, PERFUSION, PRE_CONTRAST, POST_CONTRAST, REST, STRESS, VOLUME
 – CT-specific
 ➢ ATTENUATION, CARDIAC, CARDIAC_GATED, REFERENCE
Organization of Data

• Shared and Per-frame Functional Groups
 – Each functional group contains attributes that likely vary as a group, e.g. Pixel Measures, Plane Orientation, Velocity Encoding, etc.

• Dimensions
 – Specify intended order of traversal, such as space, then time (e.g., for cardiac cine loops)

• Stacks
 – Groups of spatially-related slices, repeatable

• Temporal Position Index
Dimensions

Start with a dimension of space.

A set of contiguous slices through the heart.
Add dimension of time (delay time from R-wave).

Sets of contiguous slices throughout cardiac cycle.
Temporal Position Index

Trigger Delay Time

48 ms

2

Temporal Position Index

Stack ID = 1

Dimension Index Values

1 \ 5 \ 2

Dimension Index Pointers:
1. Stack ID
2. In-Stack Position
3. Temporal Position Index

In-Stack Position

In-Stack Position

Stack ID = 1

Time (2)

Space (1)
Temporal Position Index

Dimension Index Pointers:
1. Stack ID
2. In-Stack Position
3. Temporal Position Index

Time (2)

Space (1)

48 ms

0 ms

In-Stack Position

In-Stack Position

Stack ID = 1

Stack ID = 1
Dimension Index Pointers:
1. Trigger Delay Time
2. Stack ID
3. In-Stack Position

In-Stack Position

Stack ID = 1

Dimension Index Values

2 \ 1 \ 5

Space (2)

Time (1)
Organization of Data

• Goal is to reduce the work that the receiving application has to do to “figure out”
 – How the data is organized
 – Why it is organized that way
• Without preventing use of the data in unanticipated ways
 – E.g. 3D on a dataset not intended as a volume
• Two levels
 – The detailed shared & per-frame attributes
 – The overall dimensions, stacks and temporal positions
Color Information
Spectroscopy

Storage of Spectroscopy Data

Metabolite Maps
But when?
NEMA Initiatives

• MR test tools, images and spectra available
• CT test tools and images in development

• Implementation testing & demonstration
 – In conjunction with SCAR
 – May 2004 - call for participation
 – Dec 2004 - commitment by vendors
 – Jun 2005 - SCAR demonstration
Not Just MR & CT?

• Need for new multi-frame PET object
 – Currently single slice
 – Much renewed interest in PET-CT fusion
 – To be assessed during SNM June 2004 meeting

• X-ray angiography work in progress
 – Support for digital detectors
 – New acquisition types
 – Tomosynthesis
Summary

• Primary goal of new CT & MR objects is to support inter-operability of advanced applications
 – between multiple vendors
 – between modalities, workstations & PACS
• New objects simplify the task of a receiving application by providing guidance through multi-dimensions
• Adoption requires commitment by modality, workstations and PACS vendors
• DICOM, NEMA & SCAR promoting collaboration