SPIE Medical Imaging 2009

DICOM Research Applications - life at the fringe of reality

David Clunie RadPharm, Inc.

Overview

- Range of research applications
- Clinical versus research context
- Commonalities and differences
- Types of image support & novel devices support
- DICOM versus proprietary research formats
- Non-image stuff
- Workflow
- De-identification
- Hosted applications
- Web services

Motivation

- Day job
 - Iarge commercial oncology clinical trials
- Involved in
 - NCI caBIG in vivo imaging workspace projects
- Observing other groups struggling to
 - bridge clinical and research worlds
 - handle disparate information sources & sinks
 - Ieverage COTS and open-source technology

Types of Research

- Acquisition technology
- Image processing and analysis
- Biomarkers
- Drugs & in vivo devices
- Animal trials
- Clinical trials

Areas of Application

- Research
- Development
- Validation
- Verification
- Evaluation

Clinical versus Research

- DICOM is everywhere in clinical imaging
 - undeniable, unavoidable
 - medical IS folks get over it
- Not the same acceptance in research
 - whiners say DICOM is
 - too big, complicated, expensive, limited, slow, ...
 - not XML
- Missing an opportunity
 - to leverage huge base of codified expertise & tools
- Still unavoidable for a lot of research

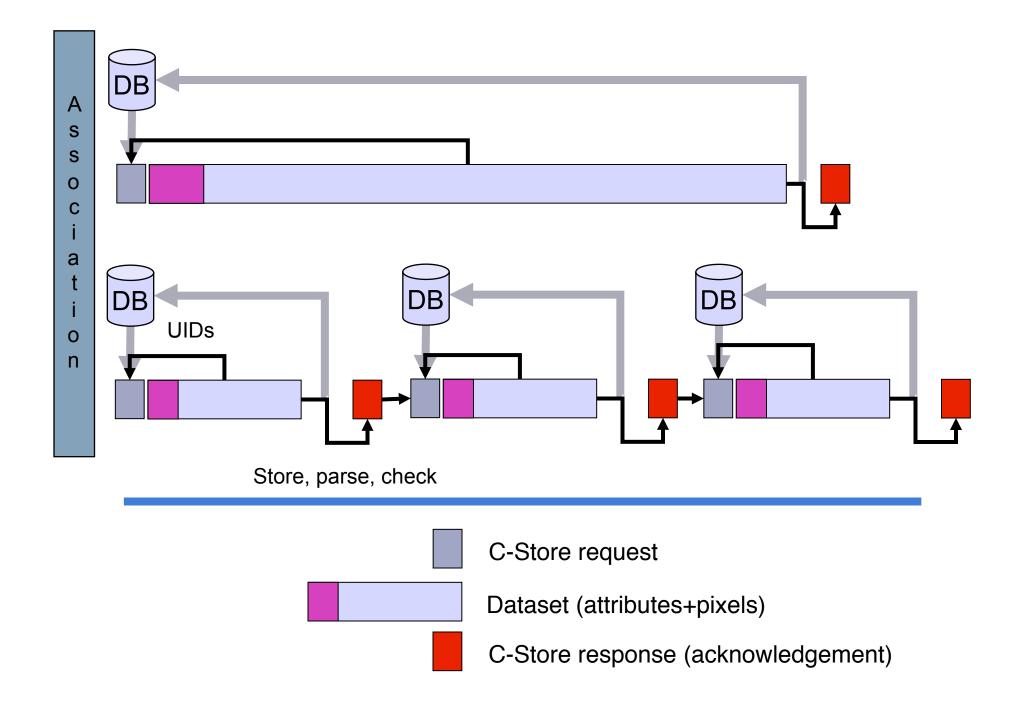
Clinical versus Research

- Research and clinical trials are "niche markets"
- Almost completely ignored by major medical device vendors
- Re-using COTS may require creative and novel workarounds
- Specialist 3rd party vendors often not DICOM aware or literate

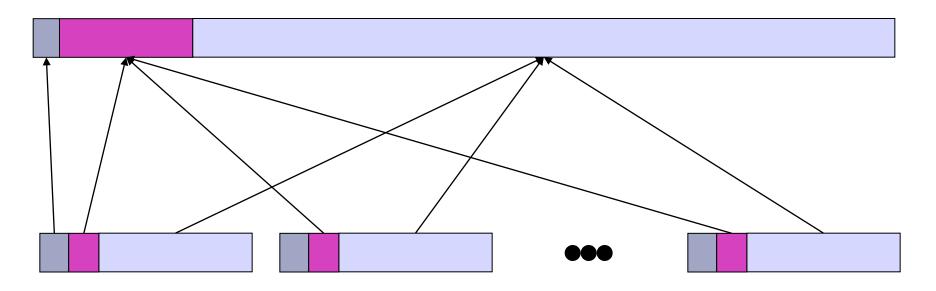
Commonalities

- Involves use of images
- Acquire images
 - human or animal
 - in vivo or ex
- Process and analyze images
- Store intermediate work
- Store and distribute results
- Search and retrieval
- Repetitive non-trivial workflow

Differences


- Specialized acquisition technology
- Multi-subject acquisition (TMA)
- De-identified subjects
- Specialized processing & analysis
- Complex form of intermediate data
- Different search criteria
- Different (if any) regulatory burden
- Different workflow

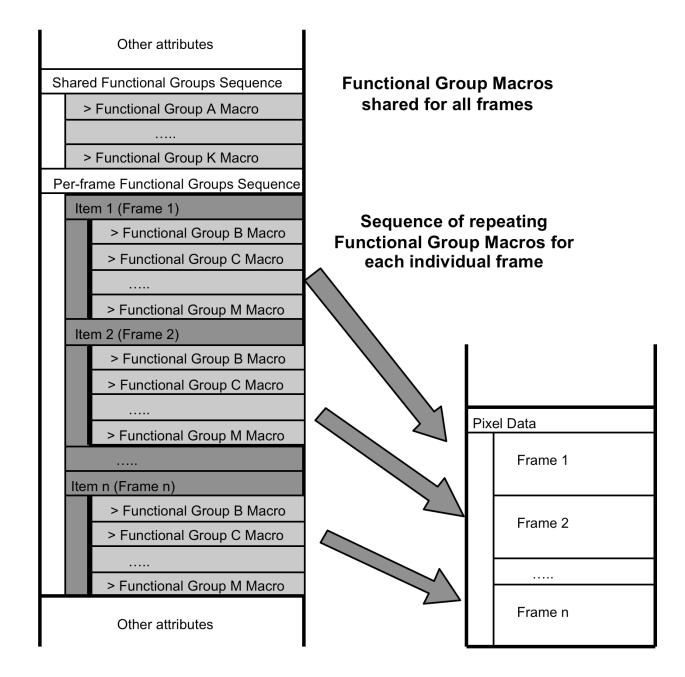
Acquisition Technology

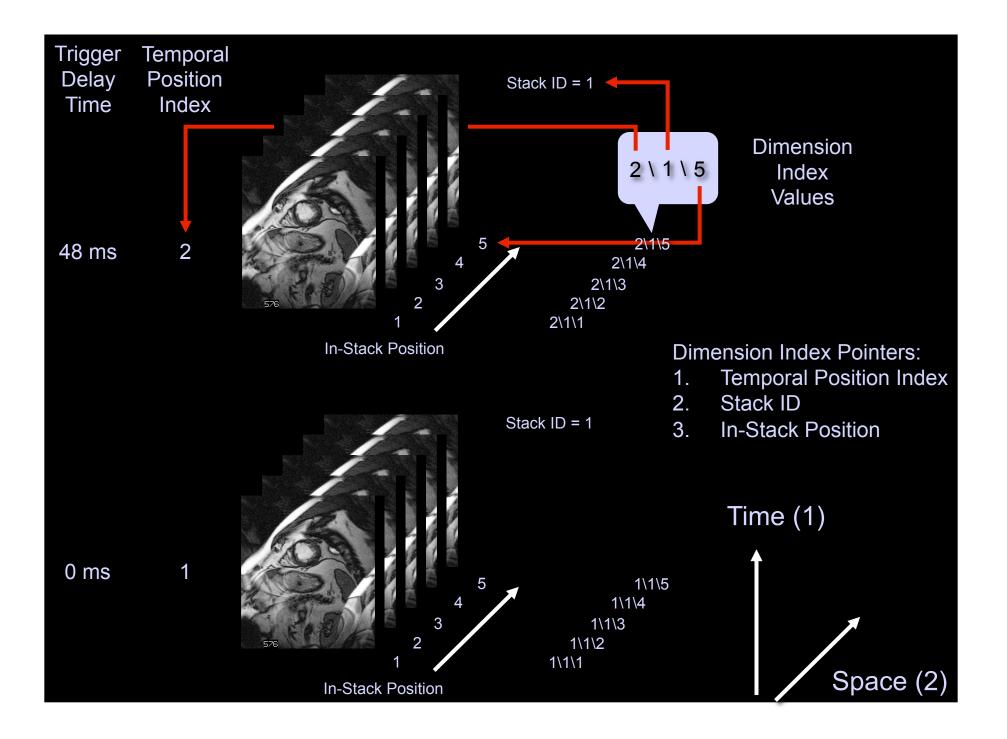

- Does DICOM have adequate coverage ?
 - to encode bulk (pixel) data
 - to manage data (demographics, etc.)
 - to describe acquisition
- Broad range of modalities
 - well beyond traditional radiology
- Improved secondary capture
 - multi-frame, vectors to describe dimensions
- Extensible with private attributes

Acquisition Technology

- Almost anything that is (or is like) an image
 - can be encoded in DICOM
 - should be encoded in DICOM
 - will be encoded in DICOM if from COTS device
- Use newer objects when possible
 - enhanced multi-frame family
 - more efficient access in single object
 - more robust descriptions (technique, timing)
 - extensible private functional groups

Multi-frame Functional Groups



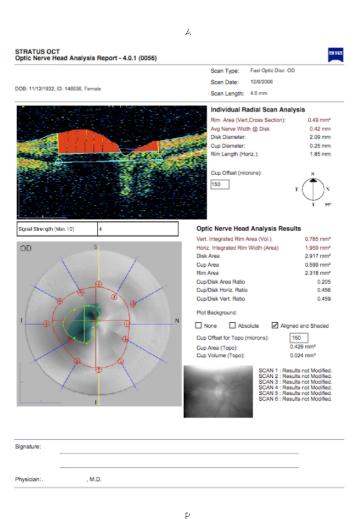

Shared attributes

Per-frame attributes

Pixel data

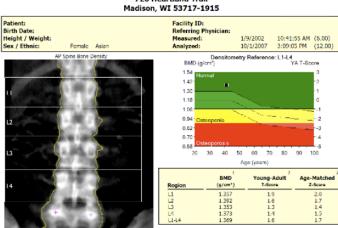
DICOM Enhanced Objects for Research Acquisitions

- Easier to keep data for a single "experiment" organized
- Slices all together in one object
- Can explicitly describe dimensions
 - generic: space, time, cardiac cycle position
 - specific: standard or private
- Supported by secondary capture
 - e.g., for novel modalities
 - as of CP 600


DICOM Enhanced Objects for Intermediate Work Storage

- To join processing pipeline components
- Same arguments apply as for acquisition
 - private frame descriptions and dimensions
 - e.g., real and imaginary frames
- Major gap is the absence of floating point pixel data representations
 - OF value representation (IEEE 32 bit float)
 - not defined for Pixel Data (7FE0,0010)
 - not supported by toolkits for Pixel Data

DICOM Output


- Emphasis on "Translational Research"
 "bench to bedside"
- More modest goal for images
 - clinical distribution of research tool output
- Clinical systems (PACS)
 - all accept DICOM input
 - most will not accept non-DICOM input
 - almost none aware of research formats
 - DICOM encapsulated PDF is an option

Encapsulated PDF

GE Healthcare 726 Heartland Trail

A

COMMENTS:

Patient: Birth Date:

Image not for diagnosis Statistically 68% of represenses a within 15D (± 0.010 g/cm² for AP Spins I 1-14)
 USA (Combined NHANES (ages 20-30) / Luner (ages 20-40)) AP Spins Reference Population 2-USG (Cervined N44895 (age: /b-xg / mag.), provided (Cervined N44895 (age: /b-xg / mag.)), provided (Cervined N44895 (age: /b-xg

Ρ

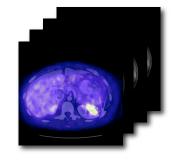
GE Healthcare

Procilizy 90909

Research Only Formats

- Medical equipment proprietary formats
 largely gone "DICOM inside"
- Research software proprietary formats
 - groups have pre-DICOM development history
 - Iacking toolkits and expertise in early days
 - single file for entire 3D/4D volume convenient
 - every group develops better "framework"
 - floating point sometimes required
 - some use other standards (HDF, NetCDF)

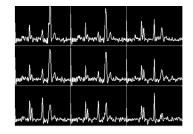
Problems with Research Only Formats

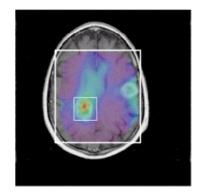

- Convert DICOM input from modalities
 - discard management & technique data
- Often no management metadata
 - organized in files & folders not database
 - build custom format-aware database
- Convert output to DICOM for PACS
 inadequate meta-data to do it right
- Problems are surmountable
 - generic format agnostic data warehouse
 - just use DICOM in the first place ?


Non-Image DICOM Objects for Research

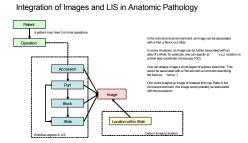
- Segmentation
 - raster binary, fractional (occupancy, probability)
 - surfaces mesh
- Registration
 - rigid affine transform
 - non-rigid deformation field
- Sorting and grouping
 - key object selection (KOS) document

Result Reporting DICOM Objects for Research


- Numeric and structured results
 - structured report (SR)
- Image appearance
 - Grayscale and color presentation states
- Multi-modality image fusion
 - Blending presentation state
- Display Organization
 - Structured Display specific images
 - Hanging Protocols rules for classes of images



Other Bulk Data DICOM Objects for Research


- Time-based Waveforms
 - ECG
 - Hemodynamic
 - Audio
- MR Spectroscopy
 - Single voxel
 - Multi-voxel
 - Multi-frame
 - Metabolite maps (CSI) as images

Storage Issues to Address or Work In Progress

- Floating point pixels
 - needed for research but no current work item
 - modality vendors convinced they don't need it
- More complex identification
 - specimen identification
 - recently completed

- Really, really big images (> 64k x 64k)
 - whole slide imaging
 - work in progress pyramidal tiling approach

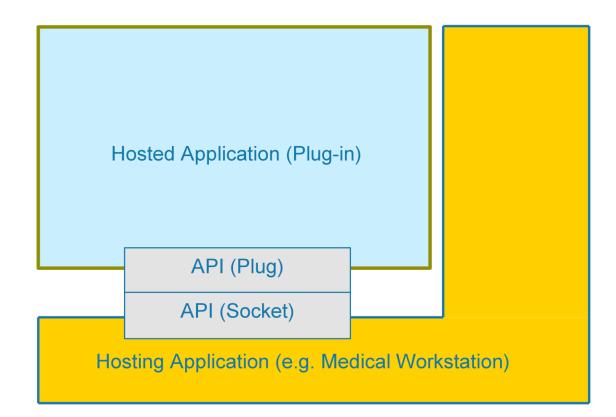
Research Workflow

Needs

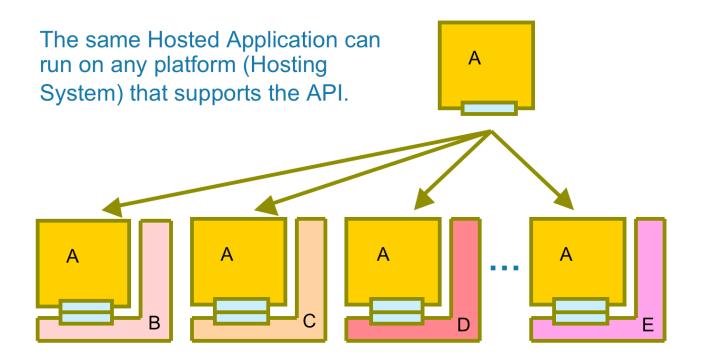
- small volume research often unmanaged and ad hoc workflow
- reliability of repetitive tasks rapidly reduces as scale increases
- multi-center phase III clinical trials demand rigorous workflow control
- Reliable and consistent
 - identifiers and status
 - sequence of operations

Research Workflow

- Solutions in DICOM
 - Worklists & Performed Procedure Step
 - Modality, General Purpose, Unified
- Solutions in IHE
 - Teaching file and Clinical trial Export (TCE)
 - Import Reconciliation WorkFlow (IRWF)
- Equally applicable to
 - novel device acquisitions
 - transfer from sites to central labs


De-identification

- Privacy is important
- Individual researchers are not lawyers
- IRBs are not always consistent
- Use-cases vary
 - need body weight for PET, not for other stuff
 - need dates for longitudinal studies
- Researchers don't know all DICOM attributes
- DICOM standard on de-identification
 - what to do with which attributes when


Research and Application Hosting

- Goal is reuse of existing infrastructure
 - engineers build the hosts
 - scientists write the application that is hosted
 - more rapid translation for clinical use and sale
- Hosts take care of
 - workflow
 - data selection, retrieval and persistence
- Hosted applications
 - do the processing +/- user interaction

Hosted Applications

Hosted Applications

Hosted Applications

- Platform neutral hosting
 - Web Services end points on local host
- Bulk (pixel) data transfer
 - via URI's which may be local files
 - memory-mapped files for efficiency
- Meta-data interfaces
 - binary entire original file
 - native XPath query of DICOM attributes
 - abstract N dimensional model

DICOM, Web Services and Research

- DICOM is almost a quarter century old
- Wide area distribution infrastructure services have improved
- "X" buzzword has become "WS-*"
- Genuine reasons to share SOAP-based persistence, transport and security infrastructure
- Adapt to support generic IHE XDS
- SOAP MTOM/XOP transport of ordinary DICOM files
- Complex remote queries over web services
- New working group formed

Conclusion

- DICOM is good for research too
- DICOM is here to help
- DICOM can accommodate specific needs
- DICOM has a clinical trials working group
- DICOM is branching out into uncharted water
- DICOM wants to be buzzword compliant too

... even at the fringe of reality