

(Informatics) Standards for Quantitative Imaging

David A. Clunie PixelMed

What is Quantitative Imaging?

 "Quantitative imaging is the extraction of quantifiable features from medical images for the assessment of normal or the severity, degree of change, or status of a disease, injury, or chronic condition relative to normal ... includes the development, standardization, and optimization of anatomical, functional, and molecular imaging acquisition protocols, data analyses, display methods, and reporting structures ... permit the validation of accurately and precisely obtained image-derived metrics with anatomically and physiologically relevant parameters, including treatment response and outcome, and the use of such metrics in research and patient care."

RSNA QIBA

"<u>https://www.rsna.org/QIBA.aspx</u>"

What is Quantitative Imaging?

 "Quantitative imaging is the extraction of quantifiable features from medical images for the assessment of normal or the severity, degree of change, or status of a disease, injury, or chronic condition relative to normal ... includes the development, standardization, and optimization of anatomical, functional, and molecular imaging acquisition protocols, data analyses, display methods, and reporting structures ... permit the validation of accurately and precisely obtained image-derived metrics with anatomically and physiologically relevant parameters, including treatment response and outcome, and the use of such metrics in research and patient care."

RSNA QIBA

"<u>https://www.rsna.org/QIBA.aspx</u>"

Opportunities for Standardization

- Methods, protocols & metrics
- Performance standards & benchmarks
- Evaluation methods
- Encoding of images & results
- Terminology & codes

Opportunities for Standardization

- Methods, protocols & metrics
- Performance standards & benchmarks
- Evaluation methods
- Encoding of images & results
- Terminology & codes

Sound familiar ?

DICOM standards in clinical practice

- images from modalities
- derived images e.g., CBF
- ROIs e.g., CT Hounsfield units, PET SUV
- size measurements distance, area, volume
- "Quantitative" imaging is nothing new
 - different emphasis than narrative reporting

Greater Rigor in Deployment

- Narrative reporting
 - see it, compare it, dictate it
- Quantitative reporting
 - see it, analyze it, measure it, code it, re-use it
- Same standards
 - greater need for numbers & codes
 - more structure

• Hairy mass, rt. temporal lobe, bigger...

See It, Analyze It, Measure It

Segmented Lesion Volume 31,524 mm³

Code It

• Why, how, what, where ...

(R-F8106,SRT, "Grand mal seizure") (24587-8,LN,"MR brain w/wo IVC") (F-04E4E,SRT,"Brain mass lesion") (RID6061,RADLEX, "Circumferential enhancement") (T-A250D,SRT,"Right Temporal Lobe)

Tabulate It

Lesion #	TimePoint #	Volume	Auto LD	Auto SD	% From Baseline Volume
1	20020501	24120	57	27	0
1	20020827	43990	58	31	82
1	20020919	31524	46	37	31
1	20021026	31554	59	35	31
1	20021207	27081	49	27	12
1	20030219	39748	55	37	65

Graph It

Scatterplot of % Difference From Baseline Volume by Time Point

Aggregate It and Visualize It

Re-Use It

Quantitative analysis need not be a "dead end"

- can just transcribe or cut-and-paste numbers into a dictated or plain text report
- but ... pre-populated "merge" fields created from structured input provide a productivity and quality gain
- can indeed save pretty tables & graphics as a PDF
- but ... much better to be able to re-use structure, numbers, codes next time for comparison, searching, mining and basis for quality improvement metrics

Informatics Standards

Approved medical device products

- already exist for quantitative image analysis & use in clinical practice
- Inputs & outputs
 - can they be standardized?
 - can they be stored & visualized in the PACS?
- Change over time course of patient
 - can these devices read and use each others' results?

Images In

Modalities make DICOM images

- often do not populate critical attributes for quantitative imaging in a standard way (private data elements)
- anatomy, protocol, technique, contrast, timing
- workflow challenge copy from modality work list
- user entry need a place on screen, need to do it
- copy to header sometimes standard lags behind
- quantitative pixel values physical units

Measurements Out

- Regions of Interest (ROI)
- Per-voxel values ("parametric maps")
- Intermediate work products
 - spatial registration (rigid & deformable)
 - fiducials
 - real-world values (physical units)

Measurements Out

DICOM encoding of ROIs

- Private data elements (evil & must be stopped)
- Curves in image (weak semantics, old, retired)
- Overlays in image (weak semantics)
- Presentation States (weak semantics, PACS favorite)
- Structured Reports (best choice, but more work)
- RT Structure Sets (coordinates only)
- Segmentations (per-voxel ROIs; use with SR)

DICOM Structured Reports

Hierarchical structure

- codes, numbers, coordinates, image references, etc.
- Flexibility is constrained by templates
 - just as XML is constrained by DTD or Schema
- Standard DICOM binary representation
 - easily stored in PACS though visualization remains challenging
 - easily transcoded to XML or JSON for processing
- Widely used in existing quantitative modalities
 - echo-cardiography, obstetric ultrasound

DICOM SR – Questions & Answers

- Basic structure is name-value pair
 - name is the "question" (code)
 - value is the "answer" (text, code, numeric, etc.)
- Different style choices possible, e.g.
 - (M-54000,SRT, "Necrosis") = (G-A203,SRT, "Present")
 - (F-00005,SRT, "Finding") = (M-54000,SRT, "Necrosis")
- Template of questions & value sets
 - populated by human (pick lists from value sets)
 - encode image processing results (e.g., detect signal or pattern)
 - rule based (e.g., too small to measure)

DICOM SR – details inside

- V CONTAINS: CONTAINER: Time Point [SEPARATE]
- HAS OBS CONTEXT: TEXT: Subject Time Point Unique Identifier = 1.3.12.2.1107.5.1564572511.384.1353518214.8
- T I HAS OBS CONTEXT: TEXT: Procedure Description = MRI Brain w/+ w/o Contrast
 - HAS PROPERTIES: UDREF: Study Instance UD = 1.3.6.1.4.1.14519.5.2.1.2783.4001.230122590826962481167637416253
 HAS PROPERTIES: CODE: Modality = Magnetic Resonance
 - HAS PROPERTIES: DATE: Study Date = 20021207
 - HAS PROPERTIES: TIME: Study Time = 165411
- T CONTAINS: CONTAINER: Lesion [SEPARATE]
 - CONTAINS: UIDREF: Tracking Unique Identifier = 1.3.12.2.1107.5.1564572511.1752.1353368560.7
- CONTAINS: CODE: Calibration = No
- CONTAINS: CONTAINER: Measurement Object [SEPARATE]
 - CONTAINS: UIDREF: Measurement Object UID = 1.3.12.2.1107.5.1564572511.2560.1353371564.19
 - CONTAINS: CODE: Measurement Object Type = Volume
 - HAS OBS CONTEXT: DATETIME: Observation Creation DateTime = 20121120003244
 - HAS OBS CONTEXT: DATETIME: Observation Modification DateTime = 20121121175419
 - CONTAINS: CODE: Discarded = No
- T CONTAINS: CONTAINER: Image Region [SEPARATE]
- V CONTAINS: CONTAINER: Image Sub-region [SEPARATE]
 - CONTAINS: CODE: Include Flag = Yes
- ▷ Description >> End >> End >> End >> End >> End >> End >> Part >> End >> E
- CONTAINS: NUM: Area = 957.772564572239 mm2
- T CONTAINS: NUM: Volume = 27080.9186434825 mm3
- HAS CONCEPT MOD: CODE: Measurement Method = Integration of sum of closed areas on contiguous slices
- CONTAINS: NUM: Attenuation Coefficient = 688.37109375 Unspecified HAS CONCEPT MOD: CODE: Derivation = Nean
- HAS CONCEPT MOD: CODE: Derivation = Nean
 Television = CONTAINS: NUM: Attenuation Coefficient = 204 Unspecified
- HAS CONCEPT MOD: CODE: Derivation = Minimum
 GONTAINS: NUM: Attenuation Coefficient = 1520 Unspecified
- HAS CONCEPT MOD: CODE: Derivation = Maximum
- T CONTAINS: NUM: Attenuation Coefficient = 681 Unspecified HAS CONCEPT MOD: CODE: Derivation = Median
- CONTAINS: NUM: Attenuation Coefficient = 259.674053 Unspecified HAS CONCEPT MOD: CODE: Derivation = Standard Deviation
- HAS CONCEPT MOD: CODE: Derivation = Total
- CONTAINS: NUM: Pixel Count = 20537 count
- CONTAINS: MAGE: Region Raster = 1.2.840.10008.5.1.4.1.1.66.4 : 1.2.276.0.7230010.3.1.4.1564572511.384.1353521414.70 (PS 1.2.840.10008.5.1.4.1.1.11.1 : 1.2.276.0.7230010.3.1.4.1564572511.384.1353521414.70
- CONTAINS: CODE: Measurement Object Type = Biorthogonal Line Segments
- CONTAINS: CONTAINER: Simple Measurement (SEPARATE)
 - HAS OBS CONTEXT: CODE: Automation = Automated
- CONTAINS: NUM: Long Axis = 49.4704627990723 millimeter
- * INFERRED FROM: SCOORD: Source of Measurement = POLYLINE (179.733993530273,280.515991210938,205.328002929688,178.141006469727)
- 🖰 SELECTED FROM: IMAGE: = 1.2.840.10008.5.1.4.1.1.4: 1.3.6.1.4.1.14519.5.2.1.2783.4001.305229386844192035439159616449[Frame 1] (#5 1.2.840.10008.5.1.4.1.1.1.1: 1.2.276.0.7230010.3.1.4.1564572511
- CONTAINS: NUM: Short Axis = 26.6379356384277 millimeter
- CONTAINS: CONTAINER: Time Point [SEPARATE]

DICOM SR – as visualized

CONTAINS: CONTAINE: TIME POINT (SEPARATE)				
HAS OBS CONTEXT: TEXT: Subject Time Point Unique Identifier = 1.3.12.2.1107.5.1564572511.384.1353518214.8				
🔻 🛄 HAS OBS CONTEXT: TEXT: Procedure Description = MRI Brain w/+ w/o Contrast				
HAS PROPERTIES: UDREF: Study Instance UD = 1.3.6.1.4.1.14519.5.2.1.2783.4001.230122590826962481167637416253				
HAS PROPERTIES: CODE: Modality = Magnetic Resonance				
HAS PROPERTIES: DATE: Study Date = 20021207	Date	Volume	AutoID	Auto SD
HAS PROPERTIES: TIME: Study Time = 165411	Bute	Volume		Auto 5D
V iii CONTAINS: CONTAINER: Lesion (SEPARATE)	20021207	27000	10	27
CONTAINS: UIDREF: Tracking Unique Identifier = 1.3.12.2.1107.5.1564572511.1752.1353368560.7	20021207	27080	49	21
CONTAINS: CODE: Calibration = No		1	7	7
Telephone Container: Measurement Object (SEPARATE)			/	
CONTAINS: UIDREF: Measurement Object UID = 1.3.12.2.1107.5.1564572511.2560.1353371564.19				
CONTAINS CODE: Measurement Object Type = Volume				
HAS OBS CONTEXT: DATETIME: Observation Creation DateTime = 20121120003244				
HAS OBS CONTEXT: DATETIME: Observation Modification DateTime = 20121121175419				
CONTAINS: CODE: Discarded = No				
V 💼 CONTAINS: CONTAINER: Image Region [SEPARATE]				
V CONTAINS: CONTAINER: Image Sub-region [SEPARATE]				
CONTAINS: CODE: Include Flag = Yes				
CONTAINS: CODE: Segmentation Method = Random Walker 3D				
CONTAINS: NUM: Area = 957.772564572239 mm2				
CONTAINS: NUM: Volume = 27080.9186434825 mm3				
HAS CONCEPT MOD: CODE: Measurement Method = Integration of sum of closed areas on contiguous slices				10000000000
CONTAINS: NUM: Attenuation Coefficient = 688.37109375 Unspecified		CITATION TO	AT IN	Head flowing
AAS CONCEPT MOD: CODE: Derivation = Mean		ITCCH-14-	3477] T.GA-14-3477	[252239978555564/]
CONTAINS: NUM: Attenuation Coefficient = 204 Unspecified		F_10337()		20030215
HAS CONCEPT MOD: CODE: Derivation = Minimum		DOD N	10201-1020	1000
V CONTAINS: NUM: Attenuation Coefficient = 1520 Unspecified			- ASS STOLEN	10 N 20
AS CONCEPT MOD: CODE: Derivation = Maximum			- 17 concentration	132.03
T CONTAINS: NUM: Attenuation Coefficient = 681 Unspecified				FE-4300
AAS CONCEPT MOD: CODE: Derivation = Median			/// * PSR	1997 WW
CONTAINS: NUM: Attenuation Coefficient = 259.674053 Unspecified				120 21
HAS CONCEPT MOD: CODE: Derivation = Standard Deviation				
CONTAINS: NUM: Attenuation Coefficient = 14137088 Unspecified				1000
HAS CONCEPT MOD: CODE: Derivation = Total			PRINT TO LAR	5 WHEN Y
CONTAINS: NUM: Pixel Count = 20537 count				•
CONTAINS: IMAGE: Region Raster = 1.2.840.10008.5.1.4.1.1.66.4 : 1.2.276.0.7239 10.3.1.4.1564572411.384.1355521414.70 IPS 1.2.840.10008.5.1.4.1.11.11 : 1.2.276.0	0.7230010.3.1.4.156457251	1.384.135352		
CONTAINS: CODE: Measurement Object Type = Biorthogonal Line Segments			A CHARLES COM	100
V 💼 CONTAINS: CONTAINER: Simple Measurement (SEPARATE)			all and a second	
HAS OBS CONTEXT: CODE: Automation = Automated			4 11	All marks
V CONTAINS: NUM: Long Axis = 49.4704627990723 millimeter				Fat0.121
w m NFERRED FROM: SCOORD: Source of Measurement = POLYLINE (179.733263530273,280.515991210938,205.3250930303031941006469727)		350 (F.T. m)	1	32515 142 (500
🕒 SELECTED FROM: MAGE: = 1.2.840.10008.5.1.4.1.1.4 : 1.3.5 : 4.1.14519.5.2.1.27 : 14001:305229386844192035439159616449[Frame 1] (#5.1.2.840.10008.5.1.4	.1.1.11.1 : 1.2.276.0.723001	0.3.1.4.15645 21-0.1001	TREASON ADDREAST TAX	MUVORMUSED
CONTAINS: NUM: Short Axis = 26.6379356384277 millimeter		2-24021-0104	Panal di America Iono	on countration and

CONTAINS: CONTAINER: Time Point [SEPARATE]

CONTAINS, CONTAINED, Time Bailed (STRADATS)

SR Templates for Quantitation

Described in DICOM PS3.16

- templates for clinical quantitative applications, e.g., cardiovascular, OB/GYN
- good basis for novel techniques, generic measurements, but insufficient

NCI QIICR project proposed new templates

- Quantitative Image Informatics for Cancer Research
- accepted into DICOM as final text 2014/11
- root template for generic "imaging measurements" (CP 1386)
- uses planar/volumetric ROIs (CP 1112) as well as simple measurements
- re-used improved "image library" to describe relevant image characteristics acquisition parameters (CP 1389)
- code sets for perfusion (CP 1391), PET (CP 1392) methods and measurements
- shared definition of "quantities" with separate real world value map improvements

Example of Measurement Repor

Node	Code Meaning of Concept Name	Code Meaning or Example Value	TID
1	Oncology Measurement Report		TID 1500
1.1	Language of Content Item and Descendants	English	TID 1204
1.2	Observation Context		TID 1001
1.2.1	Person Observer Name	Doe^Jane	TID 1003
1.3	Procedure Reported	Chest+Abd CT W+WO contr IV	TID 1500
1.4	Measurements		TID 1500
1.4.1	Measurement Group		TID 1411
1.4.1.1	Tracking Identifier	Object1	TID 1411
1.4.1.2	Tracking Unique Identifier	1.2.276.0.7230010	TID 1411
1.4.1.3	Referenced Segment	IMAGE - Segmentation, Segment #1	TID 1411
1.4.1.4	Source image for segmentation	IMAGE - CT image #1	TID 1411
1.4.1.5	Source image for segmentation	IMAGE - CT image #2	TID 1411
1.4.1.6	Volume	3267.46 mm3	TID 1419

Table RRR.1-1. Volumetric ROI on CT Example

Example of PET Measurement -

1.4	Measurements		TID 1500
1.4.1	Measurement Group		TID 1411
1.4.1.1	Tracking Identifier	Liver	TID 1411
1.4.1.2	Tracking Unique Identifier	1.2.276.0.7230010	TID 1411
1.4.1.3	Time Point	ТРО	TID 1502
1.4.1.4	Referenced Segment	IMAGE - Segmentation, Segment #1	TID 1411
1.4.1.5	Source image for segmentation	IMAGE - PET image #1	TID 1411
1.4.1.6	Source image for segmentation	IMAGE - CT image #1	TID 1411
1.4.1.7	Finding Site	Liver	TID 1419
1.4.1.8	Real World Value Map used for measurement	RWVM - UID	TID 1419
1.4.1.9	SUVbw	3.90557 {SUVbw}g/ml	TID 1419
1.4.1.9.1	Derivation	Max	TID 1419
			CID 7464

Example of PET Measurement -

1.4.1.10	SUVbw	3.25653 {SUVbw}g/ml	TID 1419
1.4.1.10.1	Derivation	Peak Value Within ROI	TID 1419
			CID 7464
1.4.1.11	SUVbw	2.34467 {SUVbw}g/ml	TID 1419
1.4.1.11.1	Derivation	Root Mean Square	TID 1419
			CID 7464
1.4.1.12	Standardized Added Metabolic Activity	20400.3 g	TID 1419
			CID 7466
1.4.1.12.1	Measurement Method	SUV body weight calculation method	TID 1419
1.4.1.13	Volume	395512 mm3	TID 1419
1.4.1.13.1	Measurement Method	Sum of segmented voxel volumes	TID 1419
			CID 7474

Example of Image Library

Table SSS.1-1. Image Library for PET-CT Example

Node	Code Meaning of Concept Name	Code Meaning or Example Value	TID	
1.n	Image Library		TID 1600	
1.n.1	Image Library Group		TID 1600	
1.n.1.3	Modality	PET	TID 1602	
1.n.1.4	Target Region	Whole Body	TID 1602	
1.n.1.5	Study Date	20030417	TID 1602	
1.n.1.6	Acquisition Date	20030417	TID 1602	
1.n.1.7	Acquisition Time	094513	TID 1602	
1.n.1.8	Frame of Reference UID	1.2.3.xyz	TID 1602	
1.n.1.9	Pixel Data Rows	128	TID 1602	
1.n.1.10	Pixel Data Columns	128	TID 1602	
1.n.1.11	Horizontal Pixel Spacing	4.0 mm	TID 1604	
1.n.1.12 Vertical Pixel Spacing		4.0 mm	TID 1604	
1.n.1.13	Spacing Between Slices	4.0 mm	TID 1604	
1.n.1.14	Slice Thickness	4.0 mm	TID 1604	
1.n.1.15 Image Orientation (Patient) Row X		1	TID 1604	
1.n.1.16 Image Orientation (Patient) Row Y		0	TID 1604	
1.n.1.17	Image Orientation (Patient) Row Z	0	TID 1604	

DICOM RT Structure Sets

Simple structure

- focus is iso-contour 3D coordinates of regions to treat & spare
- very limited semantics
- no standard or extensible measurements beyond simple volume

Standard DICOM binary representation

 easily transcoded to other DICOM objects like SR or PS if 3D (patient-relative) to 2D (image-relative) coordinate mapping is available (e.g., via source images or an SR image library)

• Widely used in existing RT & non-RT workstations

- also understood by many academic software tools

DICOM Presentation States

Intended to preserve appearance

- grayscale pipeline (window)
- spatial transformation (pan/zoom)
- annotation (text, overlays, vector graphics)

Lack semantics

- what does the text "mean"? (NLP)
- which graphic is it associated with?

Overall, a poor choice for quantitative results

- may be all that is available in many PACS (to create & view)

Parametric Maps

Foster N L et al. Brain 2007;130:2616-2635

Meyer P T et al. J Neurol Neurosurg Psychiatry 2003;74:471-478

Label Maps

Brewer J et al. AJNR 2009; 30:578-580

DICOM Parametric & Label Maps

- Per-voxel encoding of numeric or label values
- Ordinary images but not just "pretty pictures"
 - modality-specific or secondary capture; single or multi-frame
- Segmentations (label maps, ROIs)
 - binary, probability, fractional occupancy
 - multiple segments (multiple labels)
- Parametric Maps integer or floating point values
 - integers rescaled to floats (usable by any viewer)
 - recent extension to floating point voxels
- Leave "fusion" (superimposition) to application
 - Blending Presentation State to specify what to fuse

Parametric Maps

Can be encoded as:

- "traditional" modality-specific images of "derived" type
- new Parametric Map Storage SOP Class

• Parametric Map Storage SOP Class (Sup 172)

- integer or floating point (32 or 64 bit) pixels
- single "sample" per frame (i.e., monochrome)
- pseudo-coloring for rendering defined separately
- an enhanced MF family object (dimensions, functional groups)
- for intermediate files (to propagate composite context)
- uses Real World Value Map to define "meaning" of values

Segmentations

• Uses

- tissue segmentation, functional segmentation, artifact identification for quantification or visualization, atlases
- alternative method to encode ROIs: voxel based, rather than contours

Encoding

- supports segmentation of entire volumes, single slices, smaller subregions, or 2D frames
- coded description of segment category can be anatomical or property based or both
- an enhanced multi-frame image
- each frame is a 2D plane or a slice of a single segment category

DICOM Registration & Fiducials

- Mapping between 3D coordinates
 - DICOM Registration rigid matrix
 - DICOM Deformable Registration
- Location of specific points
 - DICOM Fiducial

Used to save manual or automated results

- save application state for further work later
- re-use for other purposes
- e.g., sync'd scrolling, 3D cursor, resampling, lesion propagation

DICOM Real World Value Maps

Separate pipelines based on pixels

- what to show on the display
- what the pixel (voxel) "means"
- e.g., MR pixel values
 - signal intensity windowed for display
 - mapped to physical unit (e.g. velocity for phase contrast)

DICOM implementation

- within image or separate object (e.g., derived later)
- linear equation or LUT, applied to all or sub-set of range
- point operation (all voxels) (unlike US Region Calibration)

Real World Value Mapping

Real World Value Mapping

- Unified Code for Units of Measure (UCUM)
- Quantity defined (extensibly) as:
 - (G-C1C6,SRT,"Quantity")
 - (121401, DCM, "Derivation")
 - (G-C036,SRT,"Measurement Method")

• E.g., Cerebral Blood Flow (CBF)

- Measurement Units Code Sequence
 - (ml/[100]g/min,UCUM, "milliliter per 100 gram per minute")
- Quantity Definition Sequence
 - (G-C1C6,SRT,"Quantity") = (113055,DCM,"Regional Cerebral Blood Flow")

Other Bulk Data Storage

Time-based Waveforms

- ECG
- Hemodynamic
- Audio
- MR Spectroscopy
 - Single voxel
 - Multi-voxel
 - Multi-frame
 - Metabolite maps (CSI) as images
- Raw Data IOD

A "prettier" alternative to Secondary Capture Images for "pretty pictures"

Putting it all together ...

Putting it all together ...

What about Codes?

DICOM uses external lexicons

- SNOMED
- LOINC
- RADLEX
- defines DCM codes & definitions only if no other good home

EHR push towards more reliable codes

- e.g., in USA, strong emphasis on codes in Meaningful Use
- RIS, modalities and PACS implementations could do better
- institutions really need to standardize internal procedure codes

Codes for Quantitative Imaging

Codes needed for

- entities, e.g., lesions, tumors, tissue types
- location, e.g., anatomic site
- characteristics, e.g., edges, enhancement
- measurements, e.g., volume, sum of areas, mean
- units, e.g., HU, mm
- Availability
 - many already SNOMED, LOINC, RADLEX, DCM, NCI, UCUM
 - more being defined every day
 - can use private codes in the interim & re-map later

Quantitative Codes & Definitions

Table CID 4109. Model-Independent Dynamic Contrast Analysis Parameters

Γ	Coding Scheme Designator			Code Value	Code Meaning	
	DCM		126320	IAUC		
	DCM			126321	IAUC60	
		DCM		126322	IAUC90	
		DCM		126370	Time of Peak Concentration	
		DCM		126372	Time of Leading Half-Peak Concentration	
		DCM		126371	Bolus Arrival Time	
		DCM		113069	Time To Peak	
		DCM		126374	Temporal Derivative Threshold	
	DCM			126375	Maximum Slope	
	DCM		126376	Maximum Difference		
	DCM			126377	Tracer Concentration	
	126374	Temporal Derivative Threshold	9	A threshold applied to the temporal derivative of the concentration-time curve. E.g., used to establish BAT. See Shpilfoygel Med Phys 2008. doi: 10.1118/1.1288669		
	126375	75 Maximum Slope		n Slope The maximum rate of signal intensity change within a measured region of a time-activity curve. See Boonsirikamchai, Piyaporn, Harmeet Kaur, Deborah A. Kuban, Edward Jackson, Ping Hou, and Haesun Choi. "Use of Maximum Slope Images Generated From Dynamic Contrast-Enhanced MRI to Detect Locally Recurrent Prostate Carcinoma After Prostatectomy: A Practical Approach." American Journal of Roentgenology 198, no. 3 (March 1, 2012): W228–W236. doi:10.2214/AJR.10.6387.		

Segmentation Codes

Coding Scheme Designator	Code Value	Code Meaning	SNOMED-CT Concept ID	UMLS Concept Unique ID
SRT	T-D0050	Tissue	85756007	C0040300
SRT	T-D000A	Anatomical Structure	123037004	C1268086
SRT	A-00004	Physical object	260787004	C0085089
SRT	M-01000	Morphologically Altered Structure	49755003	C0221198
SRT	R-42019	Function	246464006	C0542341
SRT	R-42018	Spatial and Relational Concept	309825002	C0587374
SRT	T-D0080	Body Substance	91720002	C0504082

Table CID 7159. Lesion Segmentation Types

Coding Scheme Designator	Code Value	Code Meaning	SNOMED-CT Concept ID	UMLS Concept Unique ID
SRT	M-41610	Abscess	44132006	C0000833
SRT	M-35000	Blood clot	75753009	C0302148
SRT	M-3340A	Cyst	367643001	C0010709
SRT	M-36300	Edema	79654002	C0013604
SRT	M-35300	Embolus	55584005	C1704212
SRT	M-37000	Hemorrhage	50960005	C0019080
SRT	M-40000	Inflammation	23583003	C0021368
SRT	M-03000	Mass	4147007	C0577559
SRT	M-54000	Necrosis	6574001	C0027540
SRT	M-8FFFF	Neoplasm	108369006	C0027651
SRT	M-03010	Nodule	27925004	C0028259

Reality Check

• The standards exist – are they implemented?

- widely, where use is critical & reimbursable (e.g. SR in echo and OB US, Radiation Dose, RTSS in radiotherapy planning & QC)
- increasingly so elsewhere, as quantitation grows in popularity (e.g., oncology, esp. PET)
- Need better and more widespread toolkit support
 - many toolkits do include basic multi-frame, SR and XML
 - many need more convenient APIs for abstractions
- Need greater 3rd party viewer & workstation support
 - many still use "proprietary" annotation formats, e.g., Osirix

What is a "standard" anyway?

Generic definition

 "something established by authority, custom, or general consent ..." (Merriam-Webster)

Technical Standards definition

 "an established norm or requirement about technical systems ... usually a formal document that establishes uniform engineering or technical criteria, methods, processes and practices" (Wikipedia)

What is a "standard" anyway?

- Standards are developed by "Standards Organizations"
 - "any organization whose primary activities are developing, coordinating, promulgating, revising, amending, reissuing, interpreting, or otherwise producing technical standards that are intended to address the needs of some relatively wide base of affected adopters" (Wikipedia)

DICOM as a Standard

- long history of modality & PACS vendor support
- global investment & representation of stake holders
- open free to get it and free to implement it
- commonality across many modalities & applications
- grows in sophistication to meet evolving technology
- patient and workflow centric

Anti-Standards - Vendors

Many systems do not go beyond images

- mistaken perception that DICOM is only for images
- hampered by lack of platform toolkit support
- do not see value in "sharing" (or saving) results
- users satisfied with secondary capture screen shots
- believe it is sufficient to save/restore "state" locally
- or hidden inside private data elements or SOP Class
- so, "Yet Another Proprietary File Format" (YAPFF)

Anti-Standards - Academics

Many academics don't like DICOM

- DICOM is "old-fashioned" (e.g., not XML based)
- easier to make up your own format than to re-use
- so, "Yet Another Academic File Format" (YAAFF)
- legitimate legacy of working code predating DICOM
- effort to retain required identifiers through pipeline
- but policy (leadership, funding) is evolving favorably
- e.g., QIN, QIICR, NWU, ePAD DICOM segmentation

Anti-Standards & Wrong Standards

- AIM
- Analyze
- GIPL
- MINC
- NIfTI
- NRRD
- **V**TK

- BMP
- JPEG
- PNG
- TIFF
- NetPBM
- HDF
- NetCDF

Translation to Clinical Practice

- "Benchmark to Bedside"
 - for "quantitative imaging" to reach clinical practice, tools and standards must be commercially viable

• No place for YA[PA]FFs & generic formats

- no patient & workflow & analysis metadata
- no support in PACS
- little or no support in viewers & workstations
- can claim is a "standard" but doesn't make it so

Beyond the Scope ...

• Many other related standard activities ...

- DICOM WG 23 Application Hosting
- DICOMweb: WADO-WS, WADO-RS, STOW, QIDO access
- DICOM XML and JSON metadata encoding
- IHE Post-Processing Workflow
- IHE XDS-I (cross-enterprise)
- DICOM De-identification (Sup 142, now in PS 3.15)
- DICOM WG 18 Research and Clinical Trials
- DICOM WG 30 Small Animal Imaging

Conclusion

- Pretty pictures are not enough
 - saving a screen shot/PDF to view in PACS is better than nothing
 - but doesn't enable further searching, analysis or re-use
- Standards are needed and already exist to fully support quantitative imaging in clinical practice
 - most gaps are in implementation and deployment, not lack of standards
 - DICOM is being and will continue to be extended as needed
 - "chicken & egg" problem with implementation is not an excuse

Conclusion

• No place for non-standard or inappropriate formats

- not just for input, but output as well
- for results from commercial products to be distributable and survive migration (version/product/vendor), must use standards
- for academic quantitative projects to be translated to clinical practice, they must embrace existing, true "standards", (i.e., DICOM), not "made up" formats that claim to be "standards"

• Greater use of standard codes is probably inevitable

- creates opportunity for better tools to search & mine content

Acknowledgements

 Quantitative Image Informatics for Cancer Research (QIICR) - PAR-12-287 Advanced Development of Informatics Technology (U24) ("<u>http://qiicr.org/</u>")