

Designing and Implementing

A PACS-Aware DICOM Image Object

For

Digital X-ray, Mammography and Intraoral Applications

David A. Clunie

Quintiles Intelligent Imaging

Clear Vision for the Healthcare Industry

Outline

- Existing experience with DICOM images
- Reasons for a new DICOM object
- Digital X-ray (DX) object family features
 - general, mammography, intra-oral
- Implementation of DX objects
 - Provider (modality)
 - User (workstation)

Existing DICOM Objects

- Projection radiography objects
 - Computed radiography (CR)
 - Secondary capture (SC) for film/screen
 - X-ray Angio/Radioflouroscopy (XA/XRF)
- Cross-sectional objects
 - Computed Tomography (CT)
 - Magnetic Resonance (MR)
 - Ultrasound (US), Nuclear Medicine (NM) ...

Existing DICOM Objects

• CR

- doesn't describe new detectors well
- no useful grouping images by series
- multiple exposures per image allowed
- anatomy, view etc. poorly described
- grayscale not defined
- relation to x-ray intensity not defined
- processed vs. unprocessed controversy

Existing DICOM Objects

- Secondary Capture
 - most of the CR object problems, plus ...
 - unconstrained grayscale, color
 - no modality specific technique attributes
 - no orientation
 - essentially no conformance mechanism

Existing DICOM & PACS

- Services adequate (store, Q/R etc)
- Application (esp. reporting) limitations:
 - routing of images (worklist or station)
 - identification of image/exam type
 - grouping of images
 - layout of images
 - grayscale appearance of images

Digital Projection Radiography

- Established technologies
 - Computed Radiography
 - Thoravision (selenium drum)
 - Optically scanned film
 - CCDs for small area (dental, mammo bx)
- New technologies
 - large flat panels (+/- scintillator)
 - slit scans, etc.

Why a new object anyway?

- New technology & new characteristics
- Characteristics of image pixel data
 - Contrast changes & image processing
 - Relationship to X-ray intensity
- Quality control needs description of
 - Acquisition
 - Detector behavior & identification
 - Dose

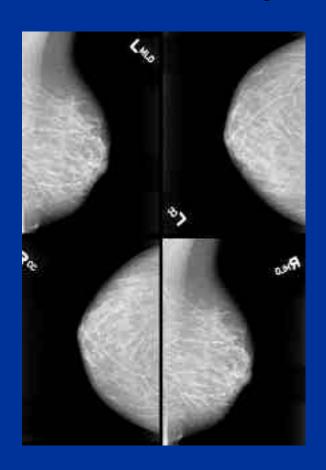
Why worry about PACS?

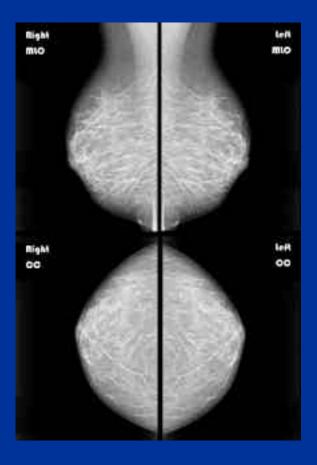
- Modality and PACS vendors/groups traditionally have separate goals
- Cost effective deployment of digital detector technology may well depend on efficient image management and efficient soft copy reading
- Encourage digital detector sales by improving PACS usability & productivity

Digital X-Ray WG Goals

- Support new digital detector technology
- Reuse existing DICOM facilities
- Support for PACS integration
- Enhance workflow/productivity
- Consistent image quality/presentation
- Support advanced applications
- Support regulatory requirements

Identifying the PACS Needs


- Image management functions of PACS
 - matching images with request
 - matching images with old studies
 - routing images to reading worklist/station based on request/anatomy/physician
- Softcopy reading functions of PACS
 - images in correct order & orientation
 - images with appropriate grayscale


Failure to Meet PACS Needs

- Radiologists can't read
 - images without request
 - request without images
 - images without old images
 - images not on reading worklist or station
- Radiologists won't read or read slowly
 - images in wrong order or upside down
 - images with wrong contrast

Productivity - Image Hanging

Satisfying the PACS Needs

- Emulate all the functions of film
 - Visual cues
 - for file clerk/technologist/radiologist
 - Flashed identification
 - Lead markers
 - Wax pencil marks
 - Well defined, repeatable grayscale

Management Features of Film

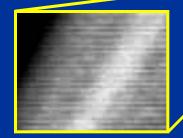
Visual Cues to Human:

Grayscale: Film type & exposure

Modality = X-ray

ау

Collimator Edges

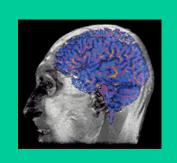

Anatomy = Skull

Projection = Lateral

Row Direction = Ant

Col Direction = Feet

Lead Marker: Laterality = L Projection = L


Grid Used = Yes

Wax Pencil: Enlarged Sella

Wax Pencil: Film Number

Flashed ID:
Patient Name
Patient ID
Patient DOB
Patient Sex
Physician
Institution

Hanging a Film

Technology

Old Lateral

F

New Lateral

F

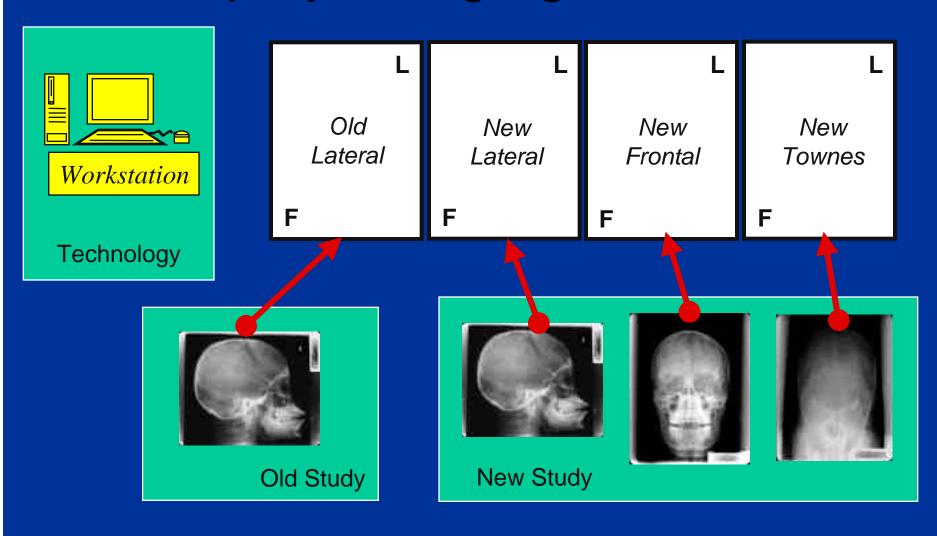
New Frontal

F

New Townes

New Study

Hanging a Film


- Extract films from patient folder
- Sort into old and new films
- Verify patient name & ID on each film
- Arrange into desired hanging order
 - Match old with new for same anatomy/view
- Turn/flip to correct orientation
 - Left on right of viewbox, feet on bottom
- Turn on lightbox, +/- use bright light

Displaying an Image

- Receive studies from worklist/prefetch
- Match modality/anatomy with protocol
- Per protocol:
 - arrange old and new images
 - arrange by anatomy/laterality view
 - rotate/flip image based on orientation
 - annotate images as desired
 - select from available contrast choices

Display Hanging Protocols

Information for Hanging

----- Anterior

Foot Right

Modality: Mammography

Anatomic Region: Breast

Image Laterality: L

View Code: Medio-Lateral Oblique

Patient Orientation: A\FR

DICOM Support for Protocols

Old Objects

DX Objects

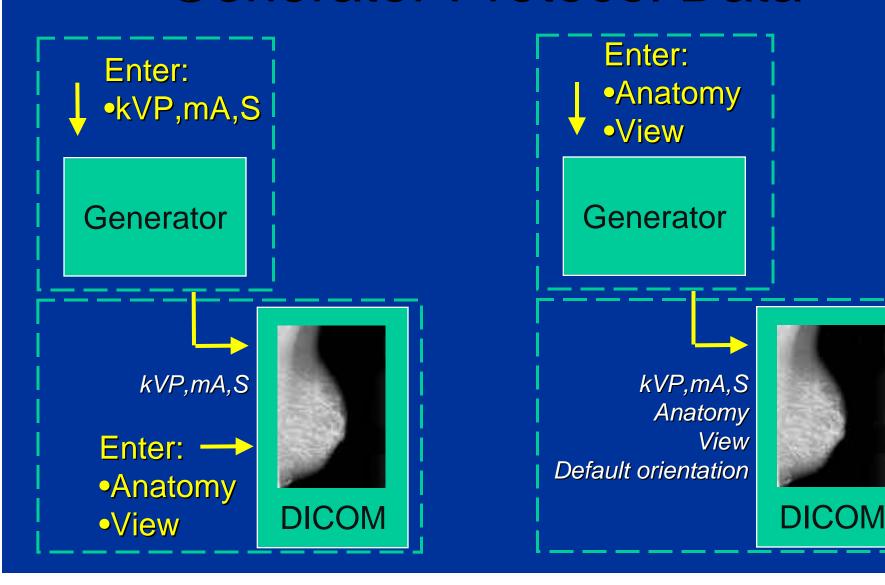
Modality
Anatomy
Laterality
View
Orientation

Non-specific Optional,text Optional Optional,text Optional

More specific (Required),coded Required (Required),coded Required

Key distinguishing feature of DX object family:

- More critical attributes are required
- More critical attributes are coded


Implementing DX Objects

- SCU (the modality or x-ray system)
 - source of mandatory attributes
 - orientation of the image
 - contrast/processing choice
- SCP (the PACS or workstation)
 - take advantage of new attributes
 - routing/reading worklist improvement
 - hanging or default display protocols
 - standardization of existing practice

DX SCU Design

- Distinguish
 - add-on systems
 - integrated systems
- Goal is minimize operator's burden
 - don't re-enter information
 - take advantage of known information
- Is a trade-off when necessary
 - PACS efficiency prioritized over modality

Generator Protocol Data

Generator Protocol Data

- Too coarse, e.g. Chest Lat = Oblique
 - make it more granular, including L or R
- Complete attributes in DICOM
 - Technique (kVP,mA,S) and derived dose
 - Anatomy and view
 - Default or preferred orientation
- Select frequency/contrast processing

Sources of Data

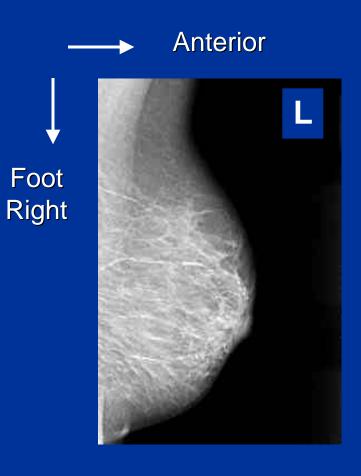
- Generator protocol selection
- Detect/select collimation
- Physical gantry (e.g. upright bucky)
- Detect/select filtration on tube
- Detect/select grid
- Detector values and statistics

Determining Orientation

- Use to describe/change orientation:
 - view e.g. PA not AP
 - geometry e.g. upright bucky
 - pixels arranged as viewed from tube side
- Therefore:
 - pixels on right towards patient's right
 - pixels at bottom towards patient's feet
 - either describe or flip to "normal" view

Determining Orientation

Operator selects ...


•Image Laterality: L

From angle and direction of gantry rotation ...

•View Code: Medio-Lateral Oblique Therefore ...

•Patient Orientation: A\FR

Already in natural view sense so
don't need to flip top/bottom

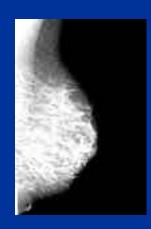
DICOM Support for Routing

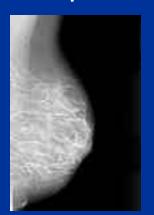
- Coded and mandatory attributes help
 - Modality+anatomy+view
- Still critical need for Modality Worklist
 - To supply identifiers that match IS/PACS
 - Patient ID/Name/Study ID
 - Study Instance UID

Don't buy or build a modality or PACS without (a good) modality worklist !!!

Contrast Transformation

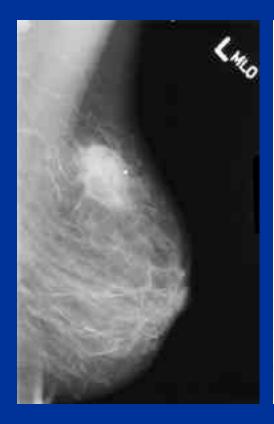
- Correct contrast transformation
 - crucial to create "film-like" appearance
- Display (& print) devices vary greatly
- Incorrect contrast is a source of
 - inefficiency
 - dissatisfaction
 - fatigue
 - errors in diagnosis


Image Presentation

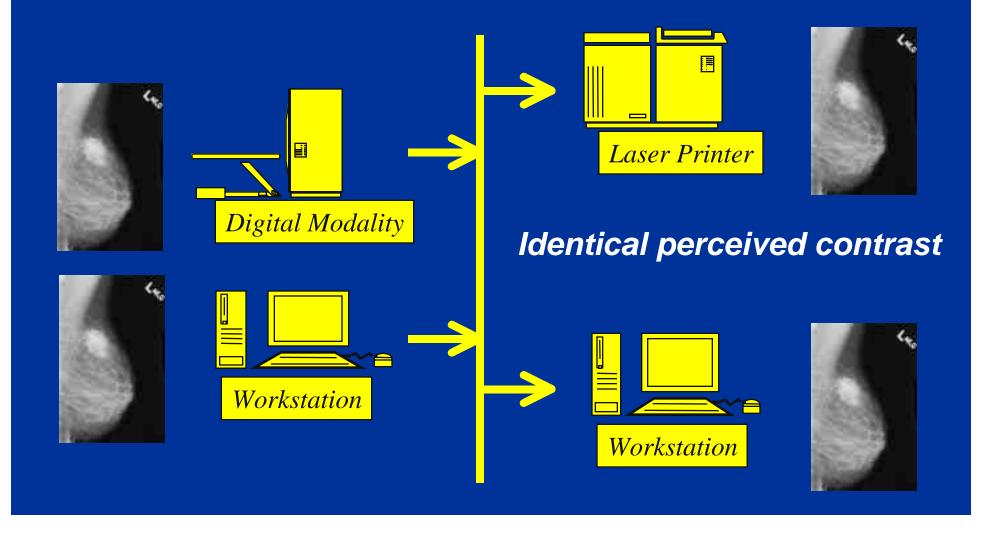

Acquire


Display

Print



Problems of Inconsistency

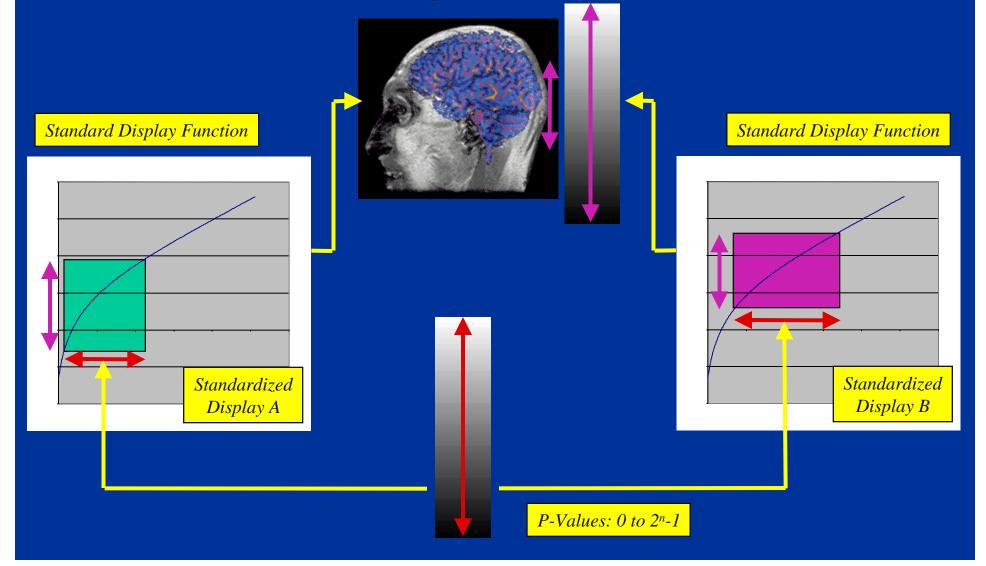


- VOI chosen with on one display device
- Rendered on another with different display
- Mass expected to be seen is no longer seen

mass visible

mass invisible

Distributed Image Consistency



Contrast Transformation

- Existing DICOM optional & arbitrary
- DX family mandatory & standard
- Two key elements
 - appropriate choice of contrast function
 - linear or non-linear LUT
 - automated choice(s) based on anatomy/view
 - standard device independent output space
 - DICOM Grayscale Standard Display Function
 - perceptually linear P-Values

Device Independent Contrast

Implementing Contrast Consistency

- SCU Implementation (modality)
 - choose contrast (window or VOI LUT)
 based on standard display function rather
 than specific film/camera/monitor
- SCP Implementation (workstation)
 - display must be standardized
 - display must be calibrated
 - quality control process in place

Conclusions

- New technology provided opportunity
- PACS experience with existing DICOM
- New Digital X-ray (DX) object family
- PACS productivity improvement
 - display hanging protocols
 - routing and reading worklist
 - consistent grayscale appearance
- Implementation reuses available data